

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/182911/publications.pdf Version: 2024-02-01

lie Li

#	Article	IF	CITATIONS
1	Effects of Bi 2 O 3 -Nb 2 O 5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrite ceramics. Ceramics International, 2018, 44, 10545-10550.	4.8	61
2	Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. Journal of Materials Science, 2018, 53, 2638-2647.	3.7	61
3	Enhanced ferromagnetic properties of low temperature sintering LiZnTi ferrites with Li2O–B2O3–SiO2–CaO–Al2O3 glass addition. Journal of Alloys and Compounds, 2015, 620, 421-426.	5.5	59
4	Crystal structure and enhanced microwave dielectric properties of Ta ⁵⁺ substituted Li ₃ Mg ₂ NbO ₆ ceramics. Journal of the American Ceramic Society, 2020, 103, 214-223.	3.8	58
5	Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Tiâ€doped Li ₃ Mg ₂ NbO ₆ ceramics. Journal of the American Ceramic Society, 2020, 103, 4321-4332.	3.8	51
6	Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach. Inorganic Chemistry, 2017, 56, 4512-4520.	4.0	47
7	Low Temperature Firing of Li _{0.43} Zn _{0.27} Ti _{0.13} Fe _{2.17} O ₄ Ferrites with Enhanced Magnetic Properties. Journal of the American Ceramic Society, 2015, 98, 2556-2560.	3.8	45
8	Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites. Journal of Rare Earths, 2013, 31, 983-987.	4.8	43
9	Correlations between the structural characteristics and enhanced microwave dielectric properties of V–modified Li3Mg2NbO6 ceramics. Ceramics International, 2018, 44, 19295-19300.	4.8	39
10	Development and application of ferrite materials for low temperature co-fired ceramic technology. Chinese Physics B, 2013, 22, 117504.	1.4	35
11	Temperature stability and high-Qf of low temperature firing Mg2SiO4–Li2TiO3 microwave dielectric ceramics. Ceramics International, 2017, 43, 16167-16173.	4.8	34
12	Investigation of grain boundary diffusion and grain growth of lithium zinc ferrites with low activation energy. Journal of the American Ceramic Society, 2018, 101, 5037-5045.	3.8	34
13	Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li.42Zn.27Ti.11Mn.1Fe2.104 ferrite ceramics modified with Bi2O3-ZnO-B2O3 glass additive. Ceramics International, 2018, 44, 13122-13128.	4.8	32
14	Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering. Journal of Alloys and Compounds, 2017, 695, 931-936.	5.5	31
15	Relationship between the structure and microwave dielectric properties of non-stoichiometric Li2+xSiO3 ceramics. Ceramics International, 2017, 43, 2664-2669.	4.8	30
16	Densification and magnetic properties of NiCuZn low-sintering temperature ferrites with Bi2O3-Nb2O5 composite additives. Journal of Alloys and Compounds, 2019, 776, 954-959.	5.5	30
17	Ni–Ti equiatomic co-substitution of hexagonal M-type Ba(NiTi)xFe12â^'2xO19 ferrites. Journal of Alloys and Compounds, 2015, 649, 782-787.	5.5	29
18	Low temperature sintering BBSZ glass modified Li2MgTi3O8 microwave dielectric ceramics. Journal of Alloys and Compounds, 2015, 646, 1139-1142.	5.5	29

#	Article	IF	CITATIONS
19	Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas. Journal of Alloys and Compounds, 2018, 735, 2634-2639.	5.5	29
20	Synthesis of V2O5-Doped and low-sintered NiCuZn ferrite with uniform grains and enhanced magnetic properties. Ceramics International, 2020, 46, 10652-10657.	4.8	29
21	Enhanced gyromagnetic properties of NiCuZn ferrite ceramics for LTCC applications by adjusting MnO2-Bi2O3 substitution. Ceramics International, 2018, 44, 19370-19376.	4.8	27
22	Correlation between crystal structure and modified microwave dielectric characteristics of Cu2+ substituted Li3Mg2NbO6 ceramics. Ceramics International, 2019, 45, 10170-10175.	4.8	27
23	Low temperature sintering and microwave dielectric properties of novel temperature stable Li3Mg2NbO6-0.1TiO2 ceramics. Materials Letters, 2018, 217, 48-51.	2.6	26
24	Investigation and characterization on crystal structure and enhanced microwave dielectric properties of non-stoichiometric Li3+xMg2NbO6 ceramics. Ceramics International, 2018, 44, 20539-20544.	4.8	26
25	Phase formation, magnetic properties and Raman spectra of Co–Ti co-substitution M-type barium ferrites. Applied Physics A: Materials Science and Processing, 2015, 119, 525-532.	2.3	24
26	Low-temperature sintering and ferrimagnetic properties of LiZnTiMn ferrites with Bi2O3-CuO eutectic mixture. Journal of Alloys and Compounds, 2017, 695, 3233-3238.	5.5	24
27	Investigation on Zn-Sn co-substituted M-type hexaferrite for microwave applications. Journal of Magnetism and Magnetic Materials, 2017, 444, 421-425.	2.3	23
28	Effect of La–Zn Substitution on the Structure and Magnetic Properties of Low Temperature Co-Fired M-Type Barium Ferrite. Journal of Superconductivity and Novel Magnetism, 2014, 27, 793-797.	1.8	21
29	Magnetic properties and microstructure of low temperature sintered LiZnMnTi ferrites doped with Li2CO3B2O3Bi2O3SiO2 glasses. Journal of Alloys and Compounds, 2016, 680, 729-734.	5.5	21
30	Equal permeability and permittivity in a low temperature co-fired In-doped Mg-Cd ferrite. Ceramics International, 2018, 44, 678-682.	4.8	21
31	Correlation between structure characteristics and dielectric properties of Li2Mg3-xCuxTiO6 ceramics based on complex chemical bond theory. Ceramics International, 2019, 45, 23509-23514.	4.8	20
32	Ultralow loss and temperature stability of Li3Mg2NbO6-xLiF ceramics with low sintering temperature. Journal of Alloys and Compounds, 2019, 782, 370-374.	5.5	20
33	Miniaturized terrestrial digital media broadcasting antenna based on low loss magneto-dielectric materials for mobile handset applications. Journal of Applied Physics, 2012, 112, 043915.	2.5	19
34	TiO2 tailored low loss NiCuZn ferrite ceramics having equivalent permeability and permittivity for miniaturized antenna. Journal of Magnetism and Magnetic Materials, 2019, 487, 165318.	2.3	19
35	Microstructure and enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrite ceramics with Bi2O3-Al2O3 additive. Ceramics International, 2020, 46, 487-492.	4.8	19
36	Textured M-type barium hexaferrite Ba(ZnSn)xFe12â^'2xO19 with c-axis anisotropy and high squareness ratio. Ceramics International, 2019, 45, 4535-4539.	4.8	18

#	Article	IF	CITATIONS
37	Equivalent permeability and permittivity of Sm substituted Mg–Cd ferrites for high-frequency applications. Journal of Alloys and Compounds, 2020, 819, 153059.	5.5	18
38	Low temperature sintering and ferromagnetic properties of Li0.43Zn0.27Ti0.13Fe2.17O4 ferrites doped with BaO–ZnO–B2O3–SiO2 glass. Journal of Alloys and Compounds, 2016, 654, 140-145.	5.5	17
39	Influence of microstructure on magnetic and dielectric performance of Bi2O3-doped Mg Cd ferrites for high frequency antennas. Ceramics International, 2019, 45, 12035-12040.	4.8	17
40	Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. Journal of Alloys and Compounds, 2019, 778, 8-14.	5.5	17
41	Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceramics International, 2019, 45, 19766-19770.	4.8	16
42	Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass. Journal of Electronic Materials, 2018, 47, 4672-4677.	2.2	15
43	Low-temperature sintering synthesis and electromagnetic properties of NiCuZn/BaTiO3 composite materials. Journal of Alloys and Compounds, 2019, 788, 44-49.	5.5	15
44	Microstructure and magnetic properties of low-temperature sintered M-type hexaferrite BaZn0.6Sn0.6Fe10.8O19 for LTCC process. Journal of Magnetism and Magnetic Materials, 2019, 475, 223-228.	2.3	14
45	Double peaks of the permeability spectra of obliquely sputtered CoFeB amorphous films. Materials Research Bulletin, 2019, 110, 107-111.	5.2	14
46	Co–Ti co-substitution of M-type hexagonal barium ferrite. Materials Research Express, 2015, 2, 046104.	1.6	13
47	Nb5+ ion substitution assisted the magnetic and gyromagnetic properties of NiCuZn ferrite for high frequency LTCC devices. Ceramics International, 2022, 48, 12490-12496.	4.8	13
48	The structural and magnetic properties of barium ferrite powders prepared by the sol—gel method. Chinese Physics B, 2012, 21, 017501.	1.4	12
49	Matching impedance of Cd-substituted magnesium ferrites for wideband and miniaturized antennas. Ceramics International, 2020, 46, 27996-28005.	4.8	12
50	Synthesis and magnetic properties of low-temperature sintered, LMZBS glass-doped dense NiCuZn ferrites. Ceramics International, 2022, 48, 19011-19016.	4.8	12
51	Structural and magnetic properties of M–Ti (MÂ=ÂNi or Zn) co-substituted M-type barium ferrite by a novel sintering process. Journal of Materials Science: Materials in Electronics, 2015, 26, 1060-1065.	2.2	11
52	Effect of ZnO–B2O3–SiO2 glass additive on magnetic properties of low-sintering Li0.43Zn0.27Ti0.13Fe2.17O4 ferrites. Journal of Materials Science: Materials in Electronics, 2016, 27, 811-817.	2.2	11
53	Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites. Ceramics International, 2019, 45, 1946-1949.	4.8	11
54	Enhanced structure and microwave magnetic properties of MgZn ferrite by Cd2+ ion substitution for LTCC applications. Ceramics International, 2020, 46, 6600-6604.	4.8	11

#	Article	IF	CITATIONS
55	Structure and infrared reflectivity spectra of novel Mg3Ga2GeO8 microwave dielectric ceramic with high Q. Ceramics International, 2021, 47, 2450-2455.	4.8	11
56	Enhancement of structural and microwave properties of Zn2+ ion-substituted Li2MgSiO4 ceramics for LTCC applications. Ceramics International, 2021, 47, 15039-15043.	4.8	11
57	Low dielectric loss and narrow FMR linewidth of Ca-Ge co-substituted YInIG ferrites for microwave device application. Journal of Alloys and Compounds, 2021, 885, 160965.	5.5	11
58	Effects of Bi2O3 and Li2O B2O3Bi2O3SiO2 glass on electromagnetic properties of NiCuZn/BaTiO3 composite material at low sintering temperature. Ceramics International, 2019, 45, 11342-11346.	4.8	10
59	Effects of Bi2O3–MnO2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 12325-12332.	2.2	10
60	Bi2O3-doping controlled magnetic and dielectric properties of low-temperature co-fired NiCuZn ferrite for high-frequency applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 15437-15443.	2.2	9
61	Tunable double resonance with negative permittivity and permeability in GdFeO3 material by sintering temperature. Journal of Alloys and Compounds, 2020, 817, 152778.	5.5	9
62	Effect of zirconium deficiency on structure characteristics, morphology and microwave dielectric properties of Li2Mg3Zr1-xO6 ceramics. Ceramics International, 2021, 47, 12567-12573.	4.8	9
63	Glass-free CaMg0.9â^'xLi0.2MnxSi2O6 ceramics with enhanced dielectric properties for microwave and THz frequency applications. Ceramics International, 2022, 48, 24091-24099.	4.8	9
64	LTCC processed CoTi substituted M-type barium ferrite composite with BBSZ glass powder additives for microwave device applications. AlP Advances, 2016, 6, 056410.	1.3	8
65	Low-temperature co-fired Ni–Ti co-substituted barium ferrites. Journal of Composite Materials, 2016, 50, 173-178.	2.4	8
66	Temperature stability and chemical compatibility of novel Li1.6Zn1.6Sn2.8O8 ceramics. Materials Chemistry and Physics, 2019, 238, 121960.	4.0	8
67	Enhancement of microstructure and magnetic properties of MgCd ferrite via Sm-Ga ions substitution for microwave devices. Materials Research Bulletin, 2021, 142, 111414.	5.2	8
68	Structure and magnetic properties of CuO-substituted Co2Y hexaferrites for high frequency applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 2069-2074.	2.2	7
69	Enhanced microstructure and dielectric properties of low-temperature sintered MgO-xwt%LiF ceramics for high-frequency applications. Ceramics International, 2022, 48, 2704-2709.	4.8	6
70	Synthesis of low-temperature sintered M-type barium ferrites with enhanced microstructure, magnetic and dielectric properties. Journal of Alloys and Compounds, 2022, 899, 163146.	5.5	6
71	Bi ₂ O ₃ adjusting equivalent permeability and permittivity of M-type barium ferrite for antenna substrate application. Materials Research Express, 2019, 6, 056113.	1.6	5
72	Synthesis, phase composition and modified microwave dielectric properties of Mg2+ substituted Zn2SiO4 ceramics with uniform microstructure. Materials Research Express, 2019, 6, 106313.	1.6	4

#	Article	IF	CITATIONS
73	Grain growth and tunable ferromagnetic resonance linewidth of low-temperature sintering NiCuZn gyromagnetic ferrites. Journal of Materials Science: Materials in Electronics, 2020, 31, 2845-2853.	2.2	4
74	Microwave dielectric properties and sintering behaviors of Zn1.8SiO3.8 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 517-523.	2.2	4
75	Ultrafast spin wave propagation in thick magnetic insulator films with perpendicular magnetic anisotropy. Physical Review B, 2021, 104, .	3.2	4
76	Magnetic and dielectric properties of low-temperature sintered NiCuZn/CaTiO3 composite dual-performance materials. Journal of Alloys and Compounds, 2022, 910, 164906.	5.5	4
77	Enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrites with Bi2O3–NiO additive. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	3
78	Effect of sintering temperature on microstructure and magnetic and dielectric properties of M-type barium ferrites. Ceramics International, 2022, 48, 27712-27717.	4.8	3
79	Low temperature co-fired LiZrZn ferrites with LBBS glass. Journal of Materials Science: Materials in Electronics, 2017, 28, 1142-1146.	2.2	2
80	Low-Temperature Cofired Co/Zr-Cosubstituted M-Type Barium Ferrite. Journal of Electronic Materials, 2017, 46, 1358-1362.	2.2	2
81	Low temperature co-fired Co2Z barium–strontium ferrite materials with BBSC glass. Journal of Materials Science: Materials in Electronics, 2016, 27, 2841-2845.	2.2	1
82	Antenna design for ferromagnetic resonance and spin wave spectroscopy. Journal of Magnetism and Magnetic Materials, 2019, 490, 165442.	2.3	1
83	Ge-doped Li3+xMg2Nb1-xGexO6 ceramics with enhanced low loss and high temperature stability properties. Ceramics International, 2021, 47, 23038-23044.	4.8	1
84	Influence of CuO additive on phase formation, microstructure and microwave dielectric properties of Cu-doped CuxZn1.8-xSiO3.8 ceramics. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	1
85	Low dielectric permittivity and low loss of low temperature co-fired Li2ZnxMg0.98â^'xCo0.02SiO4 ceramics with LiF–Bi2O3 additives. Journal of Materials Science: Materials in Electronics, 2017, 28, 13638-13642.	2.2	0
86	Magnetic and dielectric properties of Sm-doped M-type barium ferrites for LTCC application. , 2018, , .		0
87	Effect of Li ₂ O-Al ₂ O ₃ -Bi ₂ O ₃ -SiO ₂ Glass on Electromagnetic Properties of Ni _{0.16} Cu _{0.22} Zn _{0.62} Fe ₂ O ₄ -BaTiO ₃	0.3	0
88	Composites at Low Sintering Temperature. Materials Science Forum, 2019, 960, 250-255. Structure and magnetic properties of In-substituted MgCd ferrite material. Materials Research Express, 2019, 6, 116123.	1.6	0