Gunnar Henriksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions. Electrochimica Acta, 2022, 403, 139714.	5.2	11
2	Structural basis for lignin recalcitrance during sulfite pulping for production of dissolving pulp from pine heartwood. Industrial Crops and Products, 2022, 177, 114391.	5.2	7
3	Influence on off-gassing during storage of Scots pine wood pellets produced from sawdust with different extractive contents. Biomass and Bioenergy, 2022, 156, 106325.	5.7	16
4	Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils. Energies, 2022, 15, 2281.	3.1	5
5	Xylan adsorption on cellulose: Preferred alignment and local surface immobilizing effect. Carbohydrate Polymers, 2022, 285, 119221.	10.2	7
6	High calcium content of <i>Eucalyptus dunnii</i> wood affects delignification and polysaccharide degradation in kraft pulping. Nordic Pulp and Paper Research Journal, 2022, 37, 338-348.	0.7	2
7	Insights on the ethanol oxidation reaction at electrodeposited PdNi catalysts under conditions of increased mass transport. International Journal of Hydrogen Energy, 2021, 46, 1615-1626.	7.1	18
8	Structure–Reactivity Effects of Biomassâ€based Hydroxyacids for Sustainable Electrochemical Hydrogen Production. ChemSusChem, 2021, 14, 1902-1912.	6.8	7
9	Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine. Energies, 2021, 14, 5895.	3.1	2
10	Stabilising mannose using sodium dithionite at alkaline conditions. Holzforschung, 2020, 74, 131-140.	1.9	1
11	Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nature Communications, 2020, 11, 4692.	12.8	117
12	Acetylation and Sugar Composition Influence the (In)Solubility of Plant β-Mannans and Their Interaction with Cellulose Surfaces. ACS Sustainable Chemistry and Engineering, 2020, 8, 10027-10040.	6.7	25
13	Lignin carbohydrate complex studies during kraft pulping for producing paper grade pulp from birch. Tappi Journal, 2020, 19, 447-460.	0.5	4
14	Compression of Biomass Substances—A Study on Springback Effects and Color Formation in Pellet Manufacture. Applied Sciences (Switzerland), 2019, 9, 4302.	2.5	13
15	Effects of Incorporated Iron or Cobalt on the Ethanol Oxidation Activity of Nickel (Oxy)Hydroxides in Alkaline Media. Electrocatalysis, 2019, 10, 489-498.	3.0	26
16	Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances. Biomass and Bioenergy, 2019, 122, 322-330.	5.7	57
17	The structure of galactoglucomannan impacts the degradation under alkaline conditions. Cellulose, 2019, 26, 2155-2175.	4.9	41
18	Critical parameters for tall oil separation I: The importance of the ratio of fatty acids to rosin acids. Tappi Journal, 2019, 18, 547-555.	0.5	2

2

#	Article	IF	CITATIONS
19	The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood. Industrial Crops and Products, 2018, 115, 315-322.	5.2	21
20	Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester. ChemSusChem, 2018, 11, 1728-1735.	6.8	15
21	Textile qualities of regenerated cellulose fibers from cotton waste pulp. Textile Reseach Journal, 2018, 88, 2485-2492.	2.2	35
22	Xyloglucan for estimating the surface area of cellulose fibers. Nordic Pulp and Paper Research Journal, 2018, 33, 194-199.	0.7	5
23	Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol. Nordic Pulp and Paper Research Journal, 2018, 33, 647-650.	0.7	19
24	Xyloglucan adsorption for measuring the specific surface area on various never-dried cellulose nanofibers. Nordic Pulp and Paper Research Journal, 2018, 33, 186-193.	0.7	4
25	Plastic composites made from glycerol, citric acid, and forest components. BioResources, 2018, 13, 6600-6612.	1.0	13
26	Bioinspired Ultrastable Lignin Cathode via Graphene Reconfiguration for Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 3553-3561.	6.7	51
27	Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation–Structure–Film Performance Interrelation. ACS Applied Materials & Interfaces, 2017, 9, 13508-13519.	8.0	149
28	Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces. Plant Physiology, 2017, 175, 1579-1592.	4.8	79
29	A possible explanation for the structural inhomogeneity of lignin in LCC networks. Wood Science and Technology, 2017, 51, 1365-1376.	3.2	26
30	On the effect of hemicellulose removal on celluloselignin interactions. Nordic Pulp and Paper Research Journal, 2017, 32, 542-549.	0.7	7
31	What are the biological functions of lignin and its complexation with carbohydrates? - OPEN ACCESS. Nordic Pulp and Paper Research Journal, 2017, 32, 527-541.	0.7	7
32	On the effect of hemicellulose removal on cellulose-lignin interactions OPEN ACCESS. Nordic Pulp and Paper Research Journal, 2017, 32, 542-549.	0.7	3
33	Editorial: From understanding the biological function of lignin in plants to production of colloidal lignin particles - OPEN ACCESS. Nordic Pulp and Paper Research Journal, 2017, 32, 483-484.	0.7	0
34	Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Advances, 2016, 6, 42120-42131.	3.6	74
35	<i>Phoma herbarum</i> , a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1175-1182.	3.0	17
36	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 2016, 116, 9305-9374.	47.7	1,110

#	Article	IF	CITATIONS
37	A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. Plant Journal, 2016, 88, 56-70.	5.7	58
38	The degree of acetylation affects the microbial degradability of mannans. Polymer Degradation and Stability, 2016, 133, 36-46.	5.8	20
39	Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties. Carbohydrate Polymers, 2016, 136, 146-153.	10.2	29
40	On the formation of lignin polysaccharide networks in Norway spruce. Phytochemistry, 2015, 111, 177-184.	2.9	44
41	Stabilization of Polysaccharides During Alkaline Pre-Treatment of Wood Combined with Enzyme-Supported Extractions in a Biorefinery. Journal of Wood Chemistry and Technology, 2015, 35, 91-101.	1.7	21
42	Extraction of hemicelluloses from fiberized spruce wood. Carbohydrate Polymers, 2015, 117, 19-24.	10.2	25
43	Technical soda lignin dissolved in urea as an environmental friendly binder in wood fiberboard. Journal of Adhesion Science and Technology, 2014, 28, 490-498.	2.6	9
44	Effect of wood carbohydrates on the oxidation of unsaturated fatty acids. Progress in Organic Coatings, 2013, 76, 1068-1074.	3.9	5
45	Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Carbohydrate Polymers, 2013, 95, 690-696.	10.2	35
46	A Novel Nano Cellulose Preparation Method and Size Fraction by Cross Flow Ultra- Filtration. Current Organic Chemistry, 2012, 16, 1871-1875.	1.6	13
47	Investigation on Enzymatic Oxidative Polymerization of Technical Soda Lignin. Current Organic Chemistry, 2012, 16, 1850-1854.	1.6	5
48	BIOREFINERY: Mild steam explosion: A way to activate wood for enzymatic treatment, chemical pulping and biorefinery processes. Nordic Pulp and Paper Research Journal, 2012, 27, 828-835.	0.7	16
49	Chemical Pulping: Fenton's reaction: a simple and versatile method to structurally modify commercial lignosulphonates. Nordic Pulp and Paper Research Journal, 2011, 26, 90-98.	0.7	11
50	Oxidation of methyl linoleate in the presence of lignin. Progress in Organic Coatings, 2011, 72, 325-333.	3.9	5
51	Structural modification of commercial lignosulphonates through laccase catalysis and ozonolysis. Industrial Crops and Products, 2010, 32, 458-466.	5.2	40
52	Effect of Model Lignin Structures on the Oxidation of Unsaturated Fatty Acids. Polymers From Renewable Resources, 2010, 1, 69-90.	1.3	4
53	Oxidative polymerisation of models for phenolic lignin end-groups by laccase. Holzforschung, 2010, 64, .	1.9	49
54	ORIGINAL RESEARCH: Sulfonation of phenolic end groups in lignin directs laccase-initiated reactions towards cross-linking. Industrial Biotechnology, 2010, 6, 50-59.	0.8	11

#	Article	IF	CITATIONS
55	Investigation of the Molecular Weight Increase of Commercial Lignosulfonates by Laccase Catalysis. Biomacromolecules, 2010, 11, 904-910.	5.4	105
56	Comparison between 10,000-year old and contemporary spruce lignin. Wood Science and Technology, 2009, 43, 23-41.	3.2	17
57	On the role of the monolignol γ-carbon functionality in lignin biopolymerization. Phytochemistry, 2009, 70, 147-155.	2.9	23
58	The influence of lignin and xylan on some kraftliner pulp properties. Nordic Pulp and Paper Research Journal, 2009, 24, 403-408.	0.7	0
59	Low Mw-lignin fractions together with vegetable oils as available oligomers for novel paper-coating applications as hydrophobic barrier. Industrial Crops and Products, 2008, 27, 98-103.	5.2	34
60	Effects of a Biologically Relevant Antioxidant on the Dehydrogenative Polymerization of Coniferyl Alcohol. Biomacromolecules, 2008, 9, 3378-3382.	5.4	7
61	The Physical Action of Cellulases Revealed by a Quartz Crystal Microbalance Study Using Ultrathin Cellulose Films and Pure Cellulases. Biomacromolecules, 2008, 9, 249-254.	5.4	94
62	On the effect of a xylanase post-treatment as a means of reducing the yellowing of bleached hardwood kraft pulp. Nordic Pulp and Paper Research Journal, 2007, 22, 172-176.	0.7	10
63	Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins. Organic and Biomolecular Chemistry, 2006, 4, 3456.	2.8	35
64	Improved Accessibility and Reactivity of Dissolving Pulp for the Viscose Process:Â Pretreatment with Monocomponent Endoglucanase. Biomacromolecules, 2006, 7, 2027-2031.	5.4	118
65	Controlled Seasoning of Scots Pine Chips Using an Albino Strain of Ophiostoma. Industrial & Engineering Chemistry Research, 2006, 45, 2374-2380.	3.7	14
66	Carbohydrate Reactions During High-Temperature Steam Treatment of Aspen Wood. Applied Biochemistry and Biotechnology, 2005, 125, 175-188.	2.9	85
67	Lignin isolated from primary walls of hybrid aspen cell cultures indicates significant differences in lignin structure between primary and secondary cell wall. Plant Physiology and Biochemistry, 2005, 43, 777-785.	5.8	38
68	The active component in the flax-retting system of the zygomycete Rhizopus oryzae sb is a family 28 polygalacturonase. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 431-438.	3.0	41
69	Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 211-214.	3.0	80
70	Structural Differences between the Ligninâ^'Carbohydrate Complexes Present in Wood and in Chemical Pulps. Biomacromolecules, 2005, 6, 3467-3473.	5.4	264
71	Progress in Enzyme-Retting of Flax. Journal of Natural Fibers, 2004, 1, 21-47.	3.1	52
72	Continuous nano- and ultra-filtration of kraft pulping black liquor with ceramic filters. Industrial Crops and Products, 2004, 20, 143-150.	5.2	58

#	Article	IF	CITATIONS
73	The formation of β–β structures in lignin biosynthesis—are there two different pathways?. Organic and Biomolecular Chemistry, 2003, 1, 3621-3624.	2.8	46
74	Mechanism of the Reductive Half-reaction in Cellobiose Dehydrogenase. Journal of Biological Chemistry, 2003, 278, 7160-7166.	3.4	60
75	Effects of Acidic Media Pre-incubation on Flax Enzyme Retting Efficiency. Textile Reseach Journal, 2003, 73, 263-267.	2.2	8
76	The effects of xyloglucan on the properties of paper made from bleached kraft pulp. Nordic Pulp and Paper Research Journal, 2003, 18, 182-187.	0.7	30
77	Polymerization of Monolignols by Redox Shuttle–Mediated Enzymatic Oxidation. Plant Cell, 2002, 14, 1953-1962.	6.6	109
78	Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. Journal of Molecular Biology, 2002, 315, 421-434.	4.2	134
79	Nontraditionally Retted Flax for Dry Cotton Blend Spinning. Textile Reseach Journal, 2001, 71, 375-380.	2.2	6
80	A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure, 2000, 8, 79-88.	3.3	136
81	Phenolic constituents in flax bast tissue and inhibition of cellulase and pectinase. Biotechnology Letters, 2000, 22, 741-746.	2.2	28
82	Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation?. FEBS Letters, 2000, 477, 79-83.	2.8	80
83	Spray Enzymatic Retting: A New Method for Processing Flax Fibers. Textile Reseach Journal, 2000, 70, 486-494.	2.2	75
84	A critical review of cellobiose dehydrogenases. Journal of Biotechnology, 2000, 78, 93-113.	3.8	387
85	Polygalacturonase is the key component in enzymatic retting of flax. Journal of Biotechnology, 2000, 81, 85-89.	3.8	92
86	Endoglucanase 28 (Cel12A), a newPhanerochaete chrysosporiumcellulase. FEBS Journal, 1999, 259, 88-95.	0.2	75
87	Production of highly efficient enzymes for flax retting by. Journal of Biotechnology, 1999, 68, 115-123.	3.8	95
88	Chemical/Physical Retting of Flax Using Detergent and Oxalic Acid at High pH. Textile Reseach Journal, 1998, 68, 942-947.	2.2	41
89	Influence of Chelating Agents and Mechanical Pretreatment on Enzymatic Retting of Flax. Textile Reseach Journal, 1997, 67, 829-836.	2.2	70
90	Effect of Retting Enzymes on the Structure and Composition of Flax Cell Walls. Textile Reseach Journal, 1997, 67, 279-287.	2.2	61

#	Article	IF	CITATIONS
91	Electron transfer between cellobiose dehydrogenase and graphite electrodes. Analytica Chimica Acta, 1996, 331, 207-215.	5.4	53
92	Calculation of the isoelectric points of native proteins with spreading of pKa values. Electrophoresis, 1995, 16, 1377-1380.	2.4	28
93	Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungusPhanerochaete chrysosporium. FEBS Letters, 1995, 369, 233-238.	2.8	61
94	Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. FEBS Journal, 1991, 196, 101-106.	0.2	141