Sandy Engelhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutually Improved Endoscopic Image Synthesis and Landmark Detection in Unpaired Image-to-Image Translation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 127-138.	6.3	16
2	Posterior temperature optimized Bayesian models for inverse problems in medical imaging. Medical Image Analysis, 2022, 78, 102382.	11.6	4
3	A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Medical Image Analysis, 2021, 67, 101832.	11.6	150
4	3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease. JACC: Cardiovascular Imaging, 2021, 14, 41-60.	5.3	63
5	Heatmap-based 2D Landmark Detection with a Varying Number of Landmarks. Informatik Aktuell, 2021, , 22-27.	0.6	6
6	M2aia—Interactive, fast, and memory-efficient analysis of 2D and 3D multi-modal mass spectrometry imaging data. GigaScience, 2021, 10, .	6.4	15
7	Unsupervised Domain Adaptation From Axial to Short-Axis Multi-Slice Cardiac MR Images by Incorporating Pretrained Task Networks. IEEE Transactions on Medical Imaging, 2021, 40, 2939-2953.	8.9	9
8	Machine Learning for Surgical Phase Recognition. Annals of Surgery, 2021, 273, 684-693.	4.2	135
9	Point detection through multi-instance deep heatmap regression for sutures in endoscopy. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 2107-2117.	2.8	7
10	Mitral valve flattening and parameter mapping for patient-specific valve diagnosis. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 617-627.	2.8	4
11	Domain gap in adapting self-supervised depth estimation methods for stereo-endoscopy. Current Directions in Biomedical Engineering, 2020, 6, .	0.4	5
12	How well do U-Net-based segmentation trained on adult cardiac magnetic resonance imaging data generalize to rare congenital heart diseases for surgical planning?. , 2020, , .		3
13	Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1177-1186.	2.8	35
14	Replicated mitral valve models from real patients offer training opportunities for minimally invasive mitral valve repair. Interactive Cardiovascular and Thoracic Surgery, 2019, 29, 43-50.	1.1	20
15	Generating Large Labeled Data Sets for Laparoscopic Image Processing Tasks Using Unpaired Image-to-Image Translation. Lecture Notes in Computer Science, 2019, , 119-127.	1.3	43
16	Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training. Lecture Notes in Computer Science, 2019, , 155-163.	1.3	9
17	Improving Surgical Training Phantoms by Hyperrealism: Deep Unpaired Image-to-Image Translation from Real Surgeries. Lecture Notes in Computer Science, 2018, , 747-755.	1.3	25
18	Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?. IEEE Transactions on Medical Imaging, 2018, 37, 2514-2525.	8.9	926

SANDY ENGELHARDT

#	Article	IF	CITATIONS
19	AR in VR: assessing surgical augmented reality visualizations in a steerable virtual reality environment. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1717-1725.	2.8	22
20	Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features. Lecture Notes in Computer Science, 2018, , 120-129.	1.3	127
21	Elastic Mitral Valve Silicone Replica Made from 3D-Printable Molds Offer Advanced Surgical Training. Informatik Aktuell, 2018, , 74-79.	0.6	5
22	Accuracy evaluation of a mitral valve surgery assistance system based on optical tracking. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1891-1904.	2.8	11
23	Intraoperative Quantitative Mitral Valve Analysis Using Optical Tracking Technology. Annals of Thoracic Surgery, 2016, 101, 1950-1956.	1.3	14
24	Towards Automatic Assessment of the Mitral Valve Coaptation Zone from 4D Ultrasound. Lecture Notes in Computer Science, 2015, , 137-145.	1.3	9
25	Augmented Reality-Enhanced Endoscopic Images for Annuloplasty Ring Sizing. Lecture Notes in Computer Science, 2014, , 128-137.	1.3	7
26	Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?. , 0, .		1