Rüdiger Behr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828790/publications.pdf

Version: 2024-02-01

840776 526287 27 904 11 27 citations h-index g-index papers 28 28 28 1649 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gene expression across mammalian organ development. Nature, 2019, 571, 505-509.	27.8	490
2	Spatial profiling of early primate gastrulation in utero. Nature, 2022, 609, 136-143.	27.8	56
3	Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Human Reproduction, 2014, 29, 2018-2031.	0.9	55
4	Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nature Reviews Urology, 2016, 13, 21-32.	3.8	42
5	Non-Viral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach. PLoS ONE, 2015, 10, e0118424.	2.5	39
6	Non-viral Induction of Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. Stem Cell Reports, 2021, 16, 754-770.	4.8	30
7	Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells, 2020, 9, 1349.	4.1	22
8	Necroptosis in primate luteolysis: a role for ceramide. Cell Death Discovery, 2019, 5, 67.	4.7	17
9	Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter. PLoS ONE, 2016, 11, e0157570.	2.5	13
10	Generation and Breeding of EGFP-Transgenic Marmoset Monkeys: Cell Chimerism and Implications for Disease Modeling. Cells, 2021, 10, 505.	4.1	12
11	Irisin is expressed by undifferentiated spermatogonia and modulates gene expression in organotypic primate testis cultures. Molecular and Cellular Endocrinology, 2020, 504, 110670.	3.2	11
12	Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch. Cells, 2020, 9, 676.	4.1	11
13	Baboon induced pluripotent stem cell generation bypiggyBactransposition of reprogramming factors. Primate Biology, 2019, 6, 75-86.	1.0	11
14	Immortalization of common marmoset monkey fibroblasts by piggyBac transposition of hTERT. PLoS ONE, 2018, 13, e0204580.	2.5	10
15	A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Scientific Reports, 2021, 11, 15439.	3.3	10
16	Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary. Stem Cells International, 2016, 2016, 1-17.	2.5	9
17	Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies. Neural Regeneration Research, 2022, 17, 1867.	3.0	9
18	Proteomic Insights into Senescence of Testicular Peritubular Cells from a Nonhuman Primate Model. Cells, 2020, 9, 2498.	4.1	7

#	Article	IF	CITATIONS
19	Controlling the Switch from Neurogenesis to Pluripotency during Marmoset Monkey Somatic Cell Reprogramming with Self-Replicating mRNAs and Small Molecules. Cells, 2020, 9, 2422.	4.1	7
20	Age-Related Alterations in the Testicular Proteome of a Non-Human Primate. Cells, 2021, 10, 1306.	4.1	7
21	Cardiac MRI in common marmosets revealing age-dependency of cardiac function. Scientific Reports, 2020, 10, 10221.	3.3	6
22	A translational cellular model for the study of peritubular cells of the testis. Reproduction, 2020, 160, 259-268.	2.6	6
23	Marmosets. Current Biology, 2015, 25, R780-R782.	3.9	5
24	Generation and Cultivation of Transgene-Free Macaque and Baboon iPSCs Under Chemically Defined Conditions. Methods in Molecular Biology, 2021, , 697-716.	0.9	4
25	SIRT1 Expression and Regulation in the Primate Testis. International Journal of Molecular Sciences, 2021, 22, 3207.	4.1	4
26	Generation of Marmoset Monkey iPSCs with Self-Replicating VEE-mRNAs in Feeder-Free Conditions. Methods in Molecular Biology, 2021, , 717-729.	0.9	2
27	Exploring the Potential of Symmetric Exon Deletion to Treat Non-Ischemic Dilated Cardiomyopathy by Removing Frameshift Mutations in TTN. Genes, 2022, 13, 1093.	2.4	1