
Julia Le Noë

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828752/publications.pdf Version: 2024-02-01

Ιπην Γε Νοδά

#	Article	IF	CITATIONS
1	Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment, 2017, 238, 5-24.	5.3	193
2	How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: The generalized representation of agro-food system applied at the regional scale in France. Science of the Total Environment, 2017, 586, 42-55.	8.0	97
3	Reshaping the European agro-food system and closing its nitrogen cycle: The potential of combining dietary change, agroecology, and circularity. One Earth, 2021, 4, 839-850.	6.8	85
4	The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Science of the Total Environment, 2018, 636, 427-436.	8.0	79
5	Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Science of the Total Environment, 2019, 660, 1486-1501.	8.0	72
6	Two contrasted future scenarios for the French agro-food system. Science of the Total Environment, 2018, 637-638, 695-705.	8.0	59
7	Long-term socioecological trajectories of agro-food systems revealed by N and P flows in French regions from 1852 to 2014. Agriculture, Ecosystems and Environment, 2018, 265, 132-143.	5.3	49
8	Hidden emissions of forest transitions: a socio-ecological reading of forest change. Current Opinion in Environmental Sustainability, 2019, 38, 14-21.	6.3	38
9	The biogeochemical imprint of human metabolism in Paris Megacity: A regionalized analysis of a water-agro-food system. Journal of Hydrology, 2019, 573, 1028-1045.	5.4	37
10	Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale. Journal of Environmental Management, 2018, 205, 18-28.	7.8	26
11	Modeling and empirical validation of longâ€ŧerm carbon sequestration in forests (France, 1850–2015). Global Change Biology, 2020, 26, 2421-2434.	9.5	25
12	La place du transport de denrées agricoles dans le cycle biogéochimique de l'azote en FranceÂ: un aspect de la spécialisation des territoires. Cahiers Agricultures, 2016, 25, 15004.	0.9	25
13	Drivers of long-term carbon dynamics in cropland: A bio-political history (France, 1852–2014). Environmental Science and Policy, 2019, 93, 53-65.	4.9	23
14	Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020. Nature Communications, 2021, 12, 6075.	12.8	23
15	The phosphorus legacy offers opportunities for agro-ecological transition (France 1850–2075). Environmental Research Letters, 2020, 15, 064022.	5.2	20
16	Quantifying and attributing land use-induced carbon emissions to biomass consumption: A critical assessment of existing approaches. Journal of Environmental Management, 2021, 286, 112228.	7.8	20
17	A comprehensive data-based assessment of forest ecosystem carbon stocks in the US 1907–2012. Environmental Research Letters, 2019, 14, 125015.	5.2	18
18	Forest carbon sink in the U.S. (1870–2012) driven by substitution of forest ecosystem service flows. Resources, Conservation and Recycling, 2022, 176, 105927.	10.8	16

Julia Le Noë

#	Article	IF	CITATIONS
19	Changes in energy and livestock systems largely explain the forest transition in Austria (1830–1910). Land Use Policy, 2021, 109, 105624.	5.6	13
20	Changes in perspective needed to forge †noâ€regret' forestâ€based climate change mitigation strategies. GCB Bioenergy, 2022, 14, 246-257.	5.6	12
21	The Seine Watershed Water-Agro-Food System: Long-Term Trajectories of C, N and P Metabolism. Handbook of Environmental Chemistry, 2020, , 91-115.	0.4	8
22	Socio-ecological drivers of long-term ecosystem carbon stock trend: An assessment with the LUCCA model of the French case. Anthropocene, 2021, 33, 100275.	3.3	8
23	Carbon Dioxide Emission and Soil Sequestration for the French Agro-Food System: Present and Prospective Scenarios. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	7
24	Opening to Distant Markets or Local Reconnection of Agro-Food Systems? Environmental Consequences at Regional and Global Scales. , 2019, , 391-413.		5
25	Forest Transitions in the United States, France and Austria: dynamics of forest change and their socio- metabolic drivers. Journal of Land Use Science, 2022, 17, 113-133.	2.2	5
26	The relative productivity of organic agriculture must be considered in the full food-system context. A comment on Connor (2022). Agricultural Systems, 2022, 199, 103413.	6.1	1