Gerhard J Woeginger

List of Publications by Year

 in descending order[^0]

1 Continuous facility location on graphs. Mathematical Programming, 2022, 192, 207-227. 2

A linear time algorithm for the robust recoverable selection problem. Discrete Applied Mathematics, 2021, 303, 94-107.

Fine-grained Complexity Analysis of Two Classic TSP Variants. ACM Transactions on Algorithms, 2021, 17, 1-29.

4 The subset sum game revisited. Theory of Computing Systems, 2021, 65, 884-900.
0.7

5 Dispersing Obnoxious Facilities on a Graph. Algorithmica, 2021, 83, 1734-1749.
$1.0 \quad 0$

6 The trouble with the second quantifier. 4or, 2021, 19, 157-181.
1.0

9

7 Travelling salesman paths on Demidenko matrices. Discrete Applied Mathematics, 2021, , 0.5

8 Non-Monochromatic and Conflict-Free Colorings on Tree Spaces and Planar Network Spaces.
Algorithmica, 2020, 82, 1081-1100.

A faster algorithm for the continuous bilevel knapsack problem. Operations Research Letters, 2020,
9 48, 784-786.

10 Timeline-based planning over dense temporal domains. Theoretical Computer Science, 2020, 813, 305-326.
0.5

4

11 Continuous Facility Location on Graphs. Lecture Notes in Computer Science, 2020, , 171-181.
1.0

1

12 The complexity of Dominating Set in geometric intersection graphs. Theoretical Computer Science,
2019, 769, 18-31.
0.5

8

13 New special cases of the Quadratic Assignment Problem with diagonally structured coefficient matrices. European Journal of Operational Research, 2018, 267, 818-834.

Preface to the Special Issue on Computer Science in Russia 2016. Theory of Computing Systems, 2018, 62, 465-466.

15 The triangle scheduling problem. Journal of Scheduling, 2018, 21, 305-312.
1.3

0
0.5

2018, 47, 767-796.

17 Partitioning Perfect Graphs into Stars. Journal of Graph Theory, 2017, 85, 297-335.
0.5

10
19 The one-dimensional Euclidean domain: finitely many obstructions are not enough. Social Choice and Welfare, 2017, 48, 409-432.

20 The multi-stripe travelling salesman problem. Annals of Operations Research, 2017, 259, 21-34.
Approximability and parameterized complexity of multicover by c-intervals. Information ProcessingWell-solvable cases of the QAP with block-structured matrices. Discrete Applied Mathematics, 2015,
29 Geometric versions of the three-dimensional assignment problem under general norms. Discrete Optimization, 2015, 18, 38-55.
0.6 12
30 Network-Based Vertex Dissolution. SIAM Journal on Discrete Mathematics, 2015, 29, 888-914. 0.4 8
31 The (Weighted) Metric Dimension of Graphs: Hard and Easy Cases. Algorithmica, 2015, 72, 1130-1171. 1.0 42Parameterized algorithmics for computational social choice: Nine research challenges. Tsinghua4.135Science and Technology, 2014, 19, 358-373.
33 Bilevel programming and the separation problem. Mathematical Programming, 2014, 146, 437-458. 1.6 24A Study on the Computational Complexity of the Bilevel Knapsack Problem. SIAM Journal on1.247

37 Two hardness results for Gamsonâ $€^{T M} S_{\text {g game. Social Choice and Welfare, 2014, 43, 963-972. }} 0.4$	
$38 \quad$The three-dimensional matching problem in Kalmanson matrices. Journal of Combinatorial Optimization, $2013,26,1-9$.	11

39 Motion Planning with Pulley, Rope, and Baskets. Theory of Computing Systems, 2013, 53, 569-582.

```
45 Uniqueness in quadratic and hyperbolic 0â€"1 programming problems. Operations Research Letters, 2013,
    41, 633-635.
```46 Analysis of multi-stage open shop processing systems. Mathematical Programming, 2013, 142, 331-348.
47 Complexity and in-approximability of a selection problem in robust optimization. 4or, 2013, 11, 249-252.1.010
48 Core Stability in Hedonic Coalition Formation. Lecture Notes in Computer Science, 2013, , 33-50.1.022
49 News and Letters. Mathematics Magazine, 2012, 85, 238-239. 0.1 0
50 Another well-solvable case of the QAP: Maximizing the job completion time variance. Operations 0.5 11
51 An algorithmic study of switch graphs. Acta Informatica, 2012, 49, 295-312. 0.5 3

Between a rock and a hard place: the two-to-one assignment problem. Mathematical Methods of Operations Research, 2012, 76, 223-237.

\footnotetext{
The x-and-y-axes travelling salesman problem. European Journal of Operational Research, 2012, 223,
}
```

5 7 ~ H o w ~ C i n d e r e l l a ~ W o n ~ t h e ~ B u c k e t ~ G a m e ~ ( a n d ~ L i v e d ~ H a p p i l y ~ E v e r ~ A f t e r ) . ~ M a t h e m a t i c s ~ M a g a z i n e , ~ 2 0 1 1 , ~ 8 4 ,
278-283.
$0.1 \quad 5$

```

58 Charlemagne's Challenge: The Periodic Latency Problem. Operations Research, 2011, 59, 674-683.
1.2

4
59 Paths, trees and matchings under disjunctive constraints. Discrete Applied Mathematics, 2011, 159,
1726-1735.
0.5

60 String execution time for finite languages: Max is easy, min is hard. Automatica, 2011, 47, 2326-2329.
3.0

26

61 The Northwest corner rule revisited. Discrete Applied Mathematics, 2011, 159, 1284-1289.
0.5

5

62 The Wiener maximum quadratic assignment problem. Discrete Optimization, 2011, 8, 411-416.
0.6

28
63 \begin{tabular}{l}
Exponential size neighborhoods for makespan minimization scheduling. Naval Research Logistics, 20 \\
\(58,795-803\).
\end{tabular}
64 Hamiltonian index is NP-complete. Discrete Applied Mathematics, 2011, 159, 246-250.
\(65 \quad\)\begin{tabular}{l}
Unbounded knapsack problems with arithmetic weight sequences. European Journal of Operational \\
Research, 2011, 213, 384-387.
\end{tabular}

66 A well-solvable special case of the bounded knapsack problem. Operations Research Letters, 2011, 39, 118-120.
0.5
The approximability of three-dimensional assignment problems with bottleneck objective. Optimization
The Alcuin Number of a Craph and Its Connections to the Vertex Cover Number. SIAM Journal on
Discrete Mathematics, 2010, 24, 757-769.When Cauchy and HÃテlder Met Minkowski: A Tour through Well-Known Inequalities. MathematicsMagazine, 2009, 82, 202-207.
0.1

6

78 The complexity of computing the Muirheadâ€"Dalton distance. Mathematical Social Sciences, 2009, 57,
81 Timetabling problems at the TU Eindhoven. European Journal of Operational Research, 2009, 196, 877-885.85 The computational complexity of graph contractions I: Polynomially solvable and NPâ€complete cases.1.622Networks, 2008, 51, 178-189.The computational complexity of graph contractions II: Two tough polynomially solvable cases.
```

91 The problem of the moody chess players. Information Processing Letters, 2008, 108, 336-337.
0.4 1

```

92 Multigraph realizations of degree sequences: Maximization is easy, minimization is hard. Operations Research Letters, 2008, 36, 594-596.
95 A polynomial time equivalence between DNA sequencing and the exact perfect matching problem. 0.6 Discrete Optimization, 2007, 4, 154-162.\(0.5 \quad 2\)
35, 754-758.
Quadratic programming and combinatorial minimum weight product problems. MathematicalProgramming, 2007, 110, 641-649.
On the robust assignment problem under a fixed number of cost scenarios. Operations Research
The constrained minimum weighted sum of job completion times problem. Mathematical Programming,
\(2006,108,115-126\).

110 Well-solvable instances for the partition problem. Applied Mathematics Letters, 2006, 19, 1053-1056.
1.5

1

111 Disjoint Pairs with Distinct Sums. Mathematics Magazine, 2006, 79, 66.
0.10

Faster algorithms for computing power indices in weighted voting games. Mathematical Social
0.3

19

113 Approximation of the supply scheduling problem. Operations Research Letters, 2005, 33, 249-254.
0.5

24

114 The no-wait flow-shop paradox. Operations Research Letters, 2005, 33, 603-608.
0.5

12
Decomposition of integer matrices and multileaf collimator sequencing. Discrete Applied
Mathematics, 2005, 152, 6-34.
\(0.5 \quad 74\)

116 A comment on scheduling two parallel machines with capacity constraints. Discrete Optimization, 2005, 2, 269-272.
0.6

23
\(117 \quad \begin{aligned} & \text { Minimizin } \\ & 309-334 .\end{aligned}\)
0.3

1

120 More on the majority rule: Profiles, societies, and responsiveness. Economics Letters, 2005, 88, 7-11.
0.9

15
121 On the nearest neighbor rule for the traveling salesman problem. Operations Research Letters, 2004,
32, 1-4.
\(0.5 \quad 76\)

Project scheduling with irregular costs: complexity, approximability, and algorithms. Acta

Inapproximability results for no-wait job shop scheduling. Operations Research Letters, 2004, 32,
0.5

22

124 All-norm approximation algorithms. Journal of Algorithms, 2004, 52, 120-133.

\footnotetext{
125 A note on the complexity of determining optimal strategies in games with common payoffs.
Mathematical Methods of Operations Research, 2003, 58, 183-189.
}
0.4

The complexity of economic equilibria for house allocation markets. Information Processing Letters,
```

135 Complexity and approximability results for slicing floorplan designs. European Journal of

```
Operational Research, 2003, 149, 533-539.

Local search for the minimum label spanning tree problem with bounded color classes. Operations
Research Letters, 2003, 31, 195-201.
0.5

54
```

145 A faster off-line algorithm for the TCP acknowledgement problem. Information Processing Letters,
2002, 81, 71-73.

```
147 Non-Approximability Results for Scheduling Problems with Minsum Criteria. INFORMS Journal on 1.0 35
Computing, 2001, 13, 157-168. 1.0
A note on the depth function of combinatorial optimization problems. Discrete Applied Mathematics,0.5
151 Hardness of approximation of the discrete time-cost tradeoff problem. Operations Research Letters, 0.5 37
152 Randomized on-line scheduling on two uniform machines. Journal of Scheduling, 2001, 4, 71-92.1.375
153 Special issue on efficient scheduling algorithms. Journal of Scheduling, 2001, 4, 285-286. 1.3 0
The reconstruction of polyominoes from their orthogonal projections. Information Processing154 Letters, 2001, 77, 225-229.A very difficult scheduling problem with communication delays. Operations Research Letters, 2001, 29,241-245.\begin{tabular}{l}
A very diff \\
\(155 \quad 241-245\) \\
\hline
\end{tabular}
1.3 0
156 Special issue on approximation algorithms: part 2. Journal of Scheduling, 2000, 3, 321-322.0.524Monge strikes again: optimal placement of web proxies in the internet. Operations Research Letters,2000, 27, 93-96.On-line scheduling on a single machine: maximizing the number of early jobs. Operations Research0.547Letters, 2000, 27, 193-197.The Maximum Travelling Salesman Problem on symmetric Demidenko matrices. Discrete Applied0.58

\footnotetext{
A comment on scheduling on uniform machines under chain-type precedence constraints. Operations
}
163 \begin{tabular}{l}
When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time \\
Approximation Scheme (FPTAS)?. INFORMS Journal on Computing, 2000, 12, 57-74. \\
164
\end{tabular} \begin{tabular}{l}
A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines. \\
Mathematics of Operations Research, 2000, 25, 63-75. \\
165
\end{tabular} \begin{tabular}{l}
Sensitivity analysis for knapsack problems: another negative result. Discrete Applied Mathematics, \\
\(1999,92,247-251\).
\end{tabular}

166 A linear-time algorithm for the bottleneck transportation problem with a fixed number of sources.
Approximation algorithms for the multiprocessor open shop scheduling problem. Operations
Research Letters, \(1999,24,157-163\). \(0.5 \quad 27\)
168 Optimal on-line algorithms for variable-sized bin covering. Operations Research Letters, 1999, 25, 47-50. 0.5 16
169 The Steiner Tree Problem in Ka 0.8 6
\(\begin{array}{ll} & \text { On-line sched } \\ 36,287-293 .\end{array}\) 0.5 8
171 Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of 1.3 107
Scheduling, 1999, 2, 203-213.1.012An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine. INFORMS
1.0
172 Journal on Computing, 1999, 11, 211-216.
173 The toughness of split graphs. Discrete Mathematics, 1998, 190, 295-297.0.419
On-Line Scheduling of Two-Machine Open Shops Where Jobs Arrive Over Time. Journal of0.816
Combinatorial Optimization, 1998, 1, 355-365. 174
176 Approximation schemes for scheduling on parallel machines. Journal of Scheduling, 1998, 1, 55-66.1.3159

\(0.5 \quad 24\)
175 A solvable case of the quadratic assignment problem. Operations Research Letters, 1998, 22, 13-17. 4
A polynomial-time approximation scheme for single-machine sequencing with delivery times and 1.3 20
177 sequence-independent batch set-up times. Journal of Scheduling, 1998, 1, 79-87.181 Sometimes Travelling is Easy: The Master Tour Problem. SIAM Journal on Discrete Mathematics, 1998, 11,81-93.
183 Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey. SIAM Review, 1998, 40,
\(496-546\). 4.2 139
185 Angle-Restricted Tours in the plane. Computational Geometry: Theory and Applications, 1997, 8, 195-218. 0.3 34
186 Simple but efficient approaches for the collapsing knapsack problem. Discrete Applied Mathematics,1997, 77, 271-280.
187 The VC-dimension of set systems defined by graphs. Discrete Applied Mathematics, 1997, 77, 237-257. 0.5 15
A polynomial-time approximation scheme for maximizing the minimum machine completion time.
Operations Research Letters, 1997, 20, 149-154. 188Minimizing the total completion time in a unit-time open shop with release times. Operations Research\(189 \quad \begin{aligned} & \text { Minimizing the total comple } \\ & \text { Letters, 1997, 20, 207-212. }\end{aligned}\)0.513
190 Greedy Algorithms for On-Line Data Compression. Journal of Algorithms, 1997, 25, 274-289. 0.9 7
191 Hamiltonian cycles in circulant digraphs with two stripes. Discrete Mathematics, 1997, 176, 233-254. 0.4 16
192 Shelf algorithms for on-line strip packing. Information Processing Letters, 1997, 63, 171-175.0.445
193 There is no asymptotic PTAS for two-dimensional vector packing. Information Processing Letters, 1997, 0.4 89
64, 293-297.
On the recognition of permuted Supnick and incomplete Monge matrices. Acta Informatica, 1996, 33,
The Convex-hull-and-k-line Travelling Salesman Problem. Information Processing Letters, 1996, 59,0.417
Three-dimensional axial assignment problems with decomposable cost coefficients. Discrete Applied
197 Scheduling with time-dependent execution times. Information Processing Letters, 1995, 54, 155-156. 0.4 11
199 A minimax assignment problem in treelike communication networks. European Journal of Operational Research, 1995, 87, 670-684.
3.5

5

UET-scheduling with chain-type precedence constraints. Computers and Operations Research, 1995, 22,
915-920.
UET-scheduling with chain-type precedence constraints. Computers and Operations Research, 1995, 22,
200 915-920.
2.4

5

On the recognition of permuted bottleneck Monge matrices. Discrete Applied Mathematics, 1995, 63,
201 43-74.
0.5

8

202 Permuting matrices to avoid forbidden submatrices. Discrete Applied Mathematics, 1995, 60, 223-248.
205 Monge matrices make maximization manageable. Operations Research Letters, 1994, 16, 245-254.
206 A lower bound for randomized on-line scheduling algorithms. Information Processing Letters, 1994, 51, 219-222.
1.0

31

An On-Line Scheduling Heuristic with Better Worst-Case Ratio Than Grahamâ \(\in^{\text {TM }}\) s List Scheduling. SIAM
Journal on Computing, 1993, 22, 349-355.

218 Polynomial graph-colorings. Discrete Applied Mathematics, 1992, 35, 29-45.
0.5

UET-scheduling with constrained processor allocations. Computers and Operations Research, 1992, 19,
1-8.

The exact LPT-bound for maximizing the minimum completion time. Operations Research Letters, 1992, 11, 281-287.

221 Finding minimum areak-gons. Discrete and Computational Geometry, 1992, 7, 45-58.
0.4

59

222 Almost tight bounds forÉ -Nets. Discrete and Computational Geometry, 1992, 7, 163-173.
0.4

102
223 Detect\(0.4 \quad 7\)
224 Minimum-link paths among obstacles in the plane. Algorithmica, 1992, 8, 431-459.1.0
The complexity of finding arborescences in hypergraphs. Information Processing Letters, 1992, 44,161-164.
227 On the equal-subset-sum problem. Information Processing Letters, 1992, 42, 299-302.0.449
228 Geometric clusterings. Journal of Algorithms, 1991, 12, 341-356.0.972
229 On minimizing the sum of \(k\) tardiness. Information Processing Letters, 1991, 38, 253-256.0.4
\(\square\)
230 Counting k-subsets and convex k-gons in the plane. Information Processing Letters, 1991, 38, 149-151.```

[^0]: Source: https:/|exaly.com/author-pdf/1828604/publications.pdf
 Version: 2024-02-01

