List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?. INFORMS Journal on Computing, 2000, 12, 57-74.	1.7	196
2	Approximation schemes for scheduling on parallel machines. Journal of Scheduling, 1998, 1, 55-66.	1.9	159
3	A polynomial-time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters, 1997, 20, 149-154.	0.7	155
4	Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey. SIAM Review, 1998, 40, 496-546.	9.5	139
5	An axiomatic characterization of the Hirsch-index. Mathematical Social Sciences, 2008, 56, 224-232.	0.5	119
6	Uncapacitated single and multiple allocation p-hub center problems. Computers and Operations Research, 2009, 36, 2230-2241.	4.0	113
7	Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling, 1999, 2, 203-213.	1.9	107
8	Almost tight bounds forÉ›-Nets. Discrete and Computational Geometry, 1992, 7, 163-173.	0.6	102
9	An On-Line Scheduling Heuristic with Better Worst-Case Ratio Than Graham's List Scheduling. SIAM Journal on Computing, 1993, 22, 349-355.	1.0	100
10	There is no asymptotic PTAS for two-dimensional vector packing. Information Processing Letters, 1997, 64, 293-297.	0.6	89
11	Preemptive scheduling with rejection. Mathematical Programming, 2003, 94, 361-374.	2.4	85
12	Semi-online scheduling with decreasing job sizes. Operations Research Letters, 2000, 27, 215-221.	0.7	83
13	The reconstruction of polyominoes from their orthogonal projections. Information Processing Letters, 2001, 77, 225-229.	0.6	78
14	New lower and upper bounds for on-line scheduling. Operations Research Letters, 1994, 16, 221-230.	0.7	76
15	On the nearest neighbor rule for the traveling salesman problem. Operations Research Letters, 2004, 32, 1-4.	0.7	76
16	Randomized on-line scheduling on two uniform machines. Journal of Scheduling, 2001, 4, 71-92.	1.9	75
17	Decomposition of integer matrices and multileaf collimator sequencing. Discrete Applied Mathematics, 2005, 152, 6-34.	0.9	74
18	Geometric clusterings. Journal of Algorithms, 1991, 12, 341-356.	0.9	72

#	Article	IF	CITATIONS
19	Scheduling with incompatible jobs. Discrete Applied Mathematics, 1994, 55, 219-232.	0.9	70
20	The exact LPT-bound for maximizing the minimum completion time. Operations Research Letters, 1992, 11, 281-287.	0.7	68
21	A study of exponential neighborhoods for the Travelling Salesman Problem and for the Quadratic Assignment Problem. Mathematical Programming, 2000, 87, 519-542.	2.4	66
22	An axiomatic analysis of Egghe's g-index. Journal of Informetrics, 2008, 2, 364-368.	2.9	65
23	On-line scheduling of unit time jobs with rejection: minimizing the total completion time. Operations Research Letters, 2002, 30, 415-420.	0.7	64
24	Three-dimensional axial assignment problems with decomposable cost coefficients. Discrete Applied Mathematics, 1996, 65, 123-139.	0.9	62
25	Paths, trees and matchings under disjunctive constraints. Discrete Applied Mathematics, 2011, 159, 1726-1735.	0.9	62
26	Polynomial graph-colorings. Discrete Applied Mathematics, 1992, 35, 29-45.	0.9	60
27	A lower bound for randomized on-line scheduling algorithms. Information Processing Letters, 1994, 51, 219-222.	0.6	60
28	Finding minimum areak-gons. Discrete and Computational Geometry, 1992, 7, 45-58.	0.6	59
29	Bilevel Knapsack with Interdiction Constraints. INFORMS Journal on Computing, 2016, 28, 319-333.	1.7	58
30	Local search for the minimum label spanning tree problem with bounded color classes. Operations Research Letters, 2003, 31, 195-201.	0.7	54
31	APPROXIMATION ALGORITHMS FOR SCHEDULING MALLEABLE TASKS UNDER PRECEDENCE CONSTRAINTS. International Journal of Foundations of Computer Science, 2002, 13, 613-627.	1.1	50
32	All-norm approximation algorithms. Journal of Algorithms, 2004, 52, 120-133.	0.9	50
33	Open problems around exact algorithms. Discrete Applied Mathematics, 2008, 156, 397-405.	0.9	50
34	On the equal-subset-sum problem. Information Processing Letters, 1992, 42, 299-302.	0.6	49
35	heuristics for parallel machine scheduling with delivery times. Acta Informatica, 1994, 31, 503-512.	0.5	49
36	Banks winners in tournaments are difficult to recognize. Social Choice and Welfare, 2003, 20, 523-528.	0.8	49

#	Article	IF	CITATIONS
37	A new characterization of the majority rule. Economics Letters, 2003, 81, 89-94.	1.9	49
38	Minimum-link paths among obstacles in the plane. Algorithmica, 1992, 8, 431-459.	1.3	47
39	On-line scheduling on a single machine: maximizing the number of early jobs. Operations Research Letters, 2000, 27, 193-197.	0.7	47
40	A Study on the Computational Complexity of the Bilevel Knapsack Problem. SIAM Journal on Optimization, 2014, 24, 823-838.	2.0	47
41	Shelf algorithms for on-line strip packing. Information Processing Letters, 1997, 63, 171-175.	0.6	45
42	On the complexity of cake cutting. Discrete Optimization, 2007, 4, 213-220.	0.9	45
43	The quadratic 0–1 knapsack problem with series–parallel support. Operations Research Letters, 2002, 30, 159-166.	0.7	43
44	On the approximability of average completion time scheduling under precedence constraints. Discrete Applied Mathematics, 2003, 131, 237-252.	0.9	43
45	A PTAS for Minimizing the Total Weighted Completion Time on Identical Parallel Machines. Mathematics of Operations Research, 2000, 25, 63-75.	1.3	42
46	The (Weighted) Metric Dimension of Graphs: Hard and Easy Cases. Algorithmica, 2015, 72, 1130-1171.	1.3	42
47	A characterization of the single-crossing domain. Social Choice and Welfare, 2013, 41, 989-998.	0.8	38
48	Hardness of approximation of the discrete time-cost tradeoff problem. Operations Research Letters, 2001, 29, 207-210.	0.7	37
49	Non-Approximability Results for Scheduling Problems with Minsum Criteria. INFORMS Journal on Computing, 2001, 13, 157-168.	1.7	35
50	Multigraph realizations of degree sequences: Maximization is easy, minimization is hard. Operations Research Letters, 2008, 36, 594-596.	0.7	35
51	Parameterized algorithmics for computational social choice: Nine research challenges. Tsinghua Science and Technology, 2014, 19, 358-373.	6.1	35
52	Angle-Restricted Tours in the plane. Computational Geometry: Theory and Applications, 1997, 8, 195-218.	0.5	34
53	A symmetry axiom for scientific impact indices. Journal of Informetrics, 2008, 2, 298-303.	2.9	34
54	Caching Is Hard—Even in the Fault Model. Algorithmica, 2012, 63, 781-794.	1.3	33

#	Article	IF	CITATIONS
55	Parallel machine scheduling with nested job assignment restrictions. Operations Research Letters, 2010, 38, 47-50.	0.7	32
56	The complexity of detecting crossingfree configurations in the plane. BIT Numerical Mathematics, 1993, 33, 580-595.	2.0	31
57	Improved Space for Bounded-Space, On-Line Bin-Packing. SIAM Journal on Discrete Mathematics, 1993, 6, 575-581.	0.8	31
58	The Travelling Salesman and the PQ-Tree. Mathematics of Operations Research, 1998, 23, 613-623.	1.3	31
59	On the dimension of simple monotonic games. European Journal of Operational Research, 2006, 170, 315-318.	5.7	31
60	Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh. Operations Research Letters, 2011, 39, 32-35.	0.7	31
61	Permuting matrices to avoid forbidden submatrices. Discrete Applied Mathematics, 1995, 60, 223-248.	0.9	29
62	Sometimes Travelling is Easy: The Master Tour Problem. SIAM Journal on Discrete Mathematics, 1998, 11, 81-93.	0.8	29
63	On the robust assignment problem under a fixed number of cost scenarios. Operations Research Letters, 2006, 34, 175-179.	0.7	29
64	The Wiener maximum quadratic assignment problem. Discrete Optimization, 2011, 8, 411-416.	0.9	28
65	Approximation algorithms for the multiprocessor open shop scheduling problem. Operations Research Letters, 1999, 24, 157-163.	0.7	27
66	String execution time for finite languages: Max is easy, min is hard. Automatica, 2011, 47, 2326-2329.	5.0	26
67	A hardness result for core stability in additive hedonic games. Mathematical Social Sciences, 2013, 65, 101-104.	0.5	26
68	Are there any nicely structured preference profiles nearby?. Mathematical Social Sciences, 2016, 79, 61-73.	0.5	25
69	A solvable case of the quadratic assignment problem. Operations Research Letters, 1998, 22, 13-17.	0.7	24
70	Monge strikes again: optimal placement of web proxies in the internet. Operations Research Letters, 2000, 27, 93-96.	0.7	24
71	Approximation of the supply scheduling problem. Operations Research Letters, 2005, 33, 249-254.	0.7	24
72	A new family of scientific impact measures: The generalized Kosmulski-indices. Scientometrics, 2009, 80, 819-826.	3.0	24

GERHARD J WOEGINGER

#	Article	IF	CITATIONS
73	Bilevel programming and the separation problem. Mathematical Programming, 2014, 146, 437-458.	2.4	24
74	A comment on scheduling two parallel machines with capacity constraints. Discrete Optimization, 2005, 2, 269-272.	0.9	23
75	The traveling salesman problem with few inner points. Operations Research Letters, 2006, 34, 106-110.	0.7	23
76	Backbone colorings for graphs: Tree and path backbones. Journal of Graph Theory, 2007, 55, 137-152.	0.9	23
77	Inapproximability results for no-wait job shop scheduling. Operations Research Letters, 2004, 32, 320-325.	0.7	22
78	Exact algorithms for the Hamiltonian cycle problem in planar graphs. Operations Research Letters, 2006, 34, 269-274.	0.7	22
79	The computational complexity of graph contractions I: Polynomially solvable and NPâ€complete cases. Networks, 2008, 51, 178-189.	2.7	22
80	Core Stability in Hedonic Coalition Formation. Lecture Notes in Computer Science, 2013, , 33-50.	1.3	22
81	A comment on scheduling on uniform machines under chain-type precedence constraints. Operations Research Letters, 2000, 26, 107-109.	0.7	21
82	Timetabling problems at the TU Eindhoven. European Journal of Operational Research, 2009, 196, 877-885.	5.7	21
83	Hamiltonian index is NP-complete. Discrete Applied Mathematics, 2011, 159, 246-250.	0.9	21
84	A polynomial-time approximation scheme for single-machine sequencing with delivery times and sequence-independent batch set-up times. Journal of Scheduling, 1998, 1, 79-87.	1.9	20
85	Minimizing Makespan and Preemption Costs on a System of Uniform Machines. Algorithmica, 2005, 42, 309-334.	1.3	20
86	The toughness of split graphs. Discrete Mathematics, 1998, 190, 295-297.	0.7	19
87	Faster algorithms for computing power indices in weighted voting games. Mathematical Social Sciences, 2005, 49, 111-116.	0.5	19
88	Simple but efficient approaches for the collapsing knapsack problem. Discrete Applied Mathematics, 1997, 77, 271-280.	0.9	18
89	The Convex-hull-and-k-line Travelling Salesman Problem. Information Processing Letters, 1996, 59, 295-301.	0.6	17
90	Sports tournaments, home–away assignments, and the break minimization problem. Discrete Optimization, 2006, 3, 165-173.	0.9	17

GERHARD J WOEGINGER

#	Article	IF	CITATIONS
91	The computational complexity of graph contractions II: Two tough polynomially solvable cases. Networks, 2008, 52, 32-56.	2.7	17
92	Pinpointing the complexity of the interval min–max regret knapsack problem. Discrete Optimization, 2010, 7, 191-196.	0.9	17
93	Hamiltonian cycles in circulant digraphs with two stripes. Discrete Mathematics, 1997, 176, 233-254.	0.7	16
94	On-Line Scheduling of Two-Machine Open Shops Where Jobs Arrive Over Time. Journal of Combinatorial Optimization, 1998, 1, 355-365.	1.3	16
95	Optimal on-line algorithms for variable-sized bin covering. Operations Research Letters, 1999, 25, 47-50.	0.7	16
96	Quadratic programming and combinatorial minimum weight product problems. Mathematical Programming, 2007, 110, 641-649.	2.4	16
97	The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees. Journal of Statistical Physics, 2017, 168, 1137-1179.	1.2	16
98	A tight bound for 3-partitioning. Discrete Applied Mathematics, 1993, 45, 249-259.	0.9	15
99	The VC-dimension of set systems defined by graphs. Discrete Applied Mathematics, 1997, 77, 237-257.	0.9	15
100	Project scheduling with irregular costs: complexity, approximability, and algorithms. Acta Informatica, 2004, 41, 83-97.	0.5	15
101	More on the majority rule: Profiles, societies, and responsiveness. Economics Letters, 2005, 88, 7-11.	1.9	15
102	The one-dimensional Euclidean domain: finitely many obstructions are not enough. Social Choice and Welfare, 2017, 48, 409-432.	0.8	15
103	More About Subcolorings. Computing (Vienna/New York), 2002, 69, 187-203.	4.8	14
104	Planar Graph Coloring Avoiding Monochromatic Subgraphs: Trees and Paths Make It Difficult. Algorithmica, 2006, 44, 343-361.	1.3	14
105	Minimizing the total completion time in a unit-time open shop with release times. Operations Research Letters, 1997, 20, 207-212.	0.7	13
106	Fast algorithms for the maximum convolution problem. Operations Research Letters, 1994, 15, 133-141.	0.7	12
107	Counting convex polygons in planar point sets. Information Processing Letters, 1995, 56, 45-49.	0.6	12
108	One, two, three, many, or: complexity aspects of dynamic network flows with dedicated arcs. Operations Research Letters, 1998, 22, 119-127.	0.7	12

#	Article	IF	CITATIONS
109	An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine. INFORMS Journal on Computing, 1999, 11, 211-216.	1.7	12
110	A polynomially solvable special case of the unbounded knapsack problem. Operations Research Letters, 2001, 29, 13-16.	0.7	12
111	The complexity of economic equilibria for house allocation markets. Information Processing Letters, 2003, 88, 219-223.	0.6	12
112	Recognizing DNA graphs is difficult. Discrete Applied Mathematics, 2003, 127, 85-94.	0.9	12
113	The two-machine open shop problem: To fit or not to fit, that is the question. Operations Research Letters, 2003, 31, 219-224.	0.7	12
114	The no-wait flow-shop paradox. Operations Research Letters, 2005, 33, 603-608.	0.7	12
115	The constrained minimum weighted sum of job completion times problem. Mathematical Programming, 2006, 108, 115-126.	2.4	12
116	Motion Planning with Pulley, Rope, and Baskets. Theory of Computing Systems, 2013, 53, 569-582.	1.1	12
117	Geometric versions of the three-dimensional assignment problem under general norms. Discrete Optimization, 2015, 18, 38-55.	0.9	12
118	UET-scheduling with constrained processor allocations. Computers and Operations Research, 1992, 19, 1-8.	4.0	11
119	Monge matrices make maximization manageable. Operations Research Letters, 1994, 16, 245-254.	0.7	11
120	Scheduling with time-dependent execution times. Information Processing Letters, 1995, 54, 155-156.	0.6	11
121	Sensitivity analysis for knapsack problems: another negative result. Discrete Applied Mathematics, 1999, 92, 247-251.	0.9	11
122	The two-dimensional cutting stock problem revisited. Mathematical Programming, 2005, 102, 519-530.	2.4	11
123	Another well-solvable case of the QAP: Maximizing the job completion time variance. Operations Research Letters, 2012, 40, 356-359.	0.7	11
124	The three-dimensional matching problem in Kalmanson matrices. Journal of Combinatorial Optimization, 2013, 26, 1-9.	1.3	11
125	Linearizable special cases of the QAP. Journal of Combinatorial Optimization, 2016, 31, 1269-1279.	1.3	11
126	Reconstructing sets of orthogonal line segments in the plane. Discrete Mathematics, 1993, 119, 167-174.	0.7	10

8

#	Article	IF	CITATIONS
127	The approximability of three-dimensional assignment problems with bottleneck objective. Optimization Letters, 2010, 4, 7-16.	1.6	10
128	Complexity and in-approximability of a selection problem in robust optimization. 4or, 2013, 11, 249-252.	1.6	10
129	Well-solvable cases of the QAP with block-structured matrices. Discrete Applied Mathematics, 2015, 186, 56-65.	0.9	10
130	Partitioning Perfect Graphs into Stars. Journal of Graph Theory, 2017, 85, 297-335.	0.9	10
131	Group activity selection problem with approval preferences. International Journal of Game Theory, 2018, 47, 767-796.	0.5	10
132	A simple solution to the two paths problem in planar graphs. Information Processing Letters, 1990, 36, 191-192.	0.6	9
133	On the complexity of function learning. Machine Learning, 1995, 18, 187-230.	5.4	9
134	Which matrices are immune against the transportation paradox?. Discrete Applied Mathematics, 2003, 130, 495-501.	0.9	9
135	A comment on parallel-machine scheduling under a grade of service provision to minimize makespan. Information Processing Letters, 2009, 109, 341-342.	0.6	9
136	A well-solvable special case of the bounded knapsack problem. Operations Research Letters, 2011, 39, 118-120.	0.7	9
137	Two hardness results for core stability in hedonic coalition formation games. Discrete Applied Mathematics, 2013, 161, 1837-1842.	0.9	9
138	Four-point conditions for the TSP: The complete complexity classification. Discrete Optimization, 2014, 14, 147-159.	0.9	9
139	The trouble with the second quantifier. 4or, 2021, 19, 157-181.	1.6	9
140	Counting k-subsets and convex k-gons in the plane. Information Processing Letters, 1991, 38, 149-151.	0.6	8
141	Counting convex k-gons in planar point sets. Information Processing Letters, 1992, 41, 191-194.	0.6	8
142	On the recognition of permuted bottleneck Monge matrices. Discrete Applied Mathematics, 1995, 63, 43-74.	0.9	8
143	On the recognition of permuted Supnick and incomplete Monge matrices. Acta Informatica, 1996, 33, 559-569.	0.5	8
144	A comment on a minmax location problem. Operations Research Letters, 1998, 23, 41-43.	0.7	8

GERHARD J WOEGINGER

#	Article	IF	CITATIONS
145	On-line scheduling on a single machine: minimizing the total completion time. Acta Informatica, 1999, 36, 287-293.	0.5	8
146	The Maximum Travelling Salesman Problem on symmetric Demidenko matrices. Discrete Applied Mathematics, 2000, 99, 413-425.	0.9	8
147	The Magnus–Derek game revisited. Information Processing Letters, 2008, 109, 38-40.	0.6	8
148	Network-Based Vertex Dissolution. SIAM Journal on Discrete Mathematics, 2015, 29, 888-914.	0.8	8
149	New special cases of the Quadratic Assignment Problem with diagonally structured coefficient matrices. European Journal of Operational Research, 2018, 267, 818-834.	5.7	8
150	The complexity of Dominating Set in geometric intersection graphs. Theoretical Computer Science, 2019, 769, 18-31.	0.9	8
151	Detecting cycles through three fixed vertices in a graph. Information Processing Letters, 1992, 42, 29-33.	0.6	7
152	Greedy Algorithms for On-Line Data Compression. Journal of Algorithms, 1997, 25, 274-289.	0.9	7
153	The Stock Size Problem. Operations Research, 1998, 46, S1-S12.	1.9	7
154	A faster off-line algorithm for the TCP acknowledgement problem. Information Processing Letters, 2002, 81, 71-73.	0.6	7
155	Scheduling with step-improving processing times. Operations Research Letters, 2006, 34, 37-40.	0.7	7
156	Eliminating graphs by means of parallel knock-out schemes. Discrete Applied Mathematics, 2007, 155, 92-102.	0.9	7
157	Graph coloring with rejection. Journal of Computer and System Sciences, 2011, 77, 439-447.	1.2	7
158	Between a rock and a hard place: the two-to-one assignment problem. Mathematical Methods of Operations Research, 2012, 76, 223-237.	1.0	7
159	Scheduling of pipelined operator graphs. Journal of Scheduling, 2012, 15, 323-332.	1.9	7
160	The Steiner Tree Problem in Kalmanson Matrices and in Circulant Matrices. Journal of Combinatorial Optimization, 1999, 3, 51-58.	1.3	6
161	A note on scoring rules that respect majority in choice and elimination. Mathematical Social Sciences, 2003, 46, 347-354.	0.5	6
162	Tight bounds for break minimization in tournament scheduling. Journal of Combinatorial Theory - Series A, 2008, 115, 1065-1068.	0.8	6

#	Article	IF	CITATIONS
163	When Cauchy and H¶lder Met Minkowski: A Tour through Well-Known Inequalities. Mathematics Magazine, 2009, 82, 202-207.	0.1	6
164	The hardness of train rearrangements. Operations Research Letters, 2009, 37, 80-82.	0.7	6
165	The multi-stripe travelling salesman problem. Annals of Operations Research, 2017, 259, 21-34.	4.1	6
166	On minimizing the sum of k tardiness. Information Processing Letters, 1991, 38, 253-256.	0.6	5
167	A minimax assignment problem in treelike communication networks. European Journal of Operational Research, 1995, 87, 670-684.	5.7	5
168	UET-scheduling with chain-type precedence constraints. Computers and Operations Research, 1995, 22, 915-920.	4.0	5
169	A linear-time algorithm for the bottleneck transportation problem with a fixed number of sources. Operations Research Letters, 1999, 24, 25-28.	0.7	5
170	An efficient algorithm for a class of constraint satisfaction problems. Operations Research Letters, 2002, 30, 9-16.	0.7	5
171	The complexity of computing the Muirhead–Dalton distance. Mathematical Social Sciences, 2009, 57, 282-284.	0.5	5
172	How Cinderella Won the Bucket Game (and Lived Happily Ever After). Mathematics Magazine, 2011, 84, 278-283.	0.1	5
173	The Northwest corner rule revisited. Discrete Applied Mathematics, 2011, 159, 1284-1289.	0.9	5
174	The x-and-y-axes travelling salesman problem. European Journal of Operational Research, 2012, 223, 333-345.	5.7	5
175	Approximability and parameterized complexity of multicover by c-intervals. Information Processing Letters, 2015, 115, 744-749.	0.6	5
176	A faster algorithm for the continuous bilevel knapsack problem. Operations Research Letters, 2020, 48, 784-786.	0.7	5
177	Fine-grained Complexity Analysis of Two Classic TSP Variants. ACM Transactions on Algorithms, 2021, 17, 1-29.	1.0	5
178	Scheduling with safety distances. Annals of Operations Research, 1995, 57, 251-264.	4.1	4
179	The mathematics of playing golf, or: a new class of difficult non-linear mixed integer programs. Mathematical Programming, 2002, 93, 77-86.	2.4	4
180	A polynomial time equivalence between DNA sequencing and the exact perfect matching problem. Discrete Optimization, 2007, 4, 154-162.	0.9	4

#	Article	IF	CITATIONS
181	Roll cutting in the curtain industry, or: A well-solvable allocation problem. European Journal of Operational Research, 2007, 183, 1397-1404.	5.7	4
182	How â^— not â^— to solve a Sudoku. Operations Research Letters, 2010, 38, 582-584.	0.7	4
183	The Alcuin Number of a Graph and Its Connections to the Vertex Cover Number. SIAM Journal on Discrete Mathematics, 2010, 24, 757-769.	0.8	4
184	Charlemagne's Challenge: The Periodic Latency Problem. Operations Research, 2011, 59, 674-683.	1.9	4
185	Fully decomposable split graphs. European Journal of Combinatorics, 2013, 34, 567-575.	0.8	4
186	Timeline-based planning over dense temporal domains. Theoretical Computer Science, 2020, 813, 305-326.	0.9	4
187	How to detect a counterfeit coin: Adaptive versus non-adaptive solutions. Information Processing Letters, 2003, 86, 137-141.	0.6	3
188	Exponential size neighborhoods for makespan minimization scheduling. Naval Research Logistics, 2011, 58, 795-803.	2.2	3
189	An algorithmic study of switch graphs. Acta Informatica, 2012, 49, 295-312.	0.5	3
190	Vertex Cover Meets Scheduling. Algorithmica, 2016, 74, 1148-1173.	1.3	3
191	A very difficult scheduling problem with communication delays. Operations Research Letters, 2001, 29, 241-245.	0.7	2
192	Complexity of the job insertion problem in multi-stage scheduling. Operations Research Letters, 2007, 35, 754-758.	0.7	2
193	An Approximation Scheme For Cake Division With A Linear Number Of Cuts. Combinatorica, 2007, 27, 205-211.	1.2	2
194	Unbounded knapsack problems with arithmetic weight sequences. European Journal of Operational Research, 2011, 213, 384-387.	5.7	2
195	Uniqueness in quadratic and hyperbolic 0–1 programming problems. Operations Research Letters, 2013, 41, 633-635.	0.7	2
196	Vote trading and subset sums. Operations Research Letters, 2015, 43, 99-102.	0.7	2
197	A linear time algorithm for the robust recoverable selection problem. Discrete Applied Mathematics, 2021, 303, 94-107.	0.9	2
198	Continuous facility location on graphs. Mathematical Programming, 2022, 192, 207-227.	2.4	2

#	Article	IF	CITATIONS
199	The complexity of finding arborescences in hypergraphs. Information Processing Letters, 1992, 44, 161-164.	0.6	1
200	Time complexity and linear-time approximation of the ancient two-machine flow shop. Journal of Scheduling, 1998, 1, 149-155.	1.9	1
201	A comment on consecutive-2-out-of-n systems. Operations Research Letters, 2001, 28, 169-171.	0.7	1
202	Embeddings of planar graphs that minimize the number of long-face cycles. Operations Research Letters, 2002, 30, 167-168.	0.7	1
203	Complexity and approximability results for slicing floorplan designs. European Journal of Operational Research, 2003, 149, 533-539.	5.7	1
204	COMPLEXITY AND APPROXIMABILITY OF DOUBLE DIGEST. Journal of Bioinformatics and Computational Biology, 2005, 03, 207-223.	0.8	1
205	Well-solvable instances for the partition problem. Applied Mathematics Letters, 2006, 19, 1053-1056.	2.7	1
206	Steiner diagrams and k-star hubs. Journal of Discrete Algorithms, 2007, 5, 622-634.	0.7	1
207	The problem of the moody chess players. Information Processing Letters, 2008, 108, 336-337.	0.6	1
208	Threshold aggregation of multi-graded rankings. Mathematical Social Sciences, 2009, 58, 58-63.	0.5	1
209	Nothing New about Equiangular Polygons. American Mathematical Monthly, 2013, 120, 849.	0.3	1
210	Analysis of multi-stage open shop processing systems. Mathematical Programming, 2013, 142, 331-348.	2.4	1
211	Investigations on the step-based research indices of Chambers and Miller. Journal of Informetrics, 2014, 8, 659-666.	2.9	1
212	The Focus of Attention Problem. Algorithmica, 2016, 74, 559-573.	1.3	1
213	Continuous Facility Location on Graphs. Lecture Notes in Computer Science, 2020, , 171-181.	1.3	1
214	Squares from Products of Consecutive Integers. American Mathematical Monthly, 2002, 109, 459.	0.3	1
215	A new on-line scheduling heuristic. European Journal of Operational Research, 1993, 71, 463-464.	5.7	0
216	On the Euclidean two paths problem. Discrete Applied Mathematics, 1993, 47, 165-173.	0.9	0

13

#	Article	IF	CITATIONS
217	Special issue on approximation algorithms: part 2. Journal of Scheduling, 2000, 3, 321-322.	1.9	Ο
218	A note on the depth function of combinatorial optimization problems. Discrete Applied Mathematics, 2001, 108, 325-328.	0.9	0
219	Special issue on efficient scheduling algorithms. Journal of Scheduling, 2001, 4, 285-286.	1.9	Ο
220	A note on the complexity of determining optimal strategies in games with common payoffs. Mathematical Methods of Operations Research, 2003, 58, 183-189.	1.0	0
221	Polygons with inscribed circles and prescribed side lengths. Applied Mathematics Letters, 2009, 22, 704-706.	2.7	0
222	News and Letters. Mathematics Magazine, 2012, 85, 238-239.	0.1	0
223	The interval ordering problem. Discrete Applied Mathematics, 2012, 160, 1094-1103.	0.9	0
224	Two hardness results for Gamson's game. Social Choice and Welfare, 2014, 43, 963-972.	0.8	0
225	Preface to the Special Issue on Computer Science in Russia 2016. Theory of Computing Systems, 2018, 62, 465-466.	1.1	0
226	The triangle scheduling problem. Journal of Scheduling, 2018, 21, 305-312.	1.9	0
227	Non-Monochromatic and Conflict-Free Colorings on Tree Spaces and Planar Network Spaces. Algorithmica, 2020, 82, 1081-1100.	1.3	0
228	The subset sum game revisited. Theory of Computing Systems, 2021, 65, 884-900.	1.1	0
229	Dispersing Obnoxious Facilities on a Graph. Algorithmica, 2021, 83, 1734-1749.	1.3	0
230	A note on the complexity of the bilevel bottleneck assignment problem. 4or, 0, , 1.	1.6	0
231	Travelling salesman paths on Demidenko matrices. Discrete Applied Mathematics, 2021, , .	0.9	0
232	Disjoint Pairs with Distinct Sums. Mathematics Magazine, 2006, 79, 66.	0.1	0