
Philip M Cummins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Occludin: One Protein, Many Forms. Molecular and Cellular Biology, 2012, 32, 242-250.	1.1	319
2	Downregulation of Blood-Brain Barrier Phenotype by Proinflammatory Cytokines Involves NADPH Oxidase-Dependent ROS Generation: Consequences for Interendothelial Adherens and Tight Junctions. PLoS ONE, 2014, 9, e101815.	1.1	193
3	The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochemical Society Transactions, 2015, 43, 702-706.	1.6	173
4	Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1585-H1597.	1.5	159
5	Cyclic Strain Inhibits Notch Receptor Signaling in Vascular Smooth Muscle Cells In Vitro. Circulation Research, 2005, 96, 567-575.	2.0	135
6	Notch 1 and 3 receptors modulate vascular smooth muscle cell growth, apoptosis and migration via a CBFâ€1/RBPâ€Jk dependent pathway. FASEB Journal, 2004, 18, 1421-1423.	0.2	118
7	Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascular Pharmacology, 2016, 82, 30-40.	1.0	103
8	Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3190-H3197.	1.5	94
9	Stabilization of brain microvascular endothelial barrier function by shear stress involves VEâ€eadherin signaling leading to modulation of pTyrâ€occludin levels. Journal of Cellular Physiology, 2011, 226, 3053-3063.	2.0	90
10	Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochemical and Biophysical Research Communications, 2005, 329, 573-582.	1.0	87
11	Tumour necrosis factorâ€î±â€mediated disruption of cerebrovascular endothelial barrier integrity <i>inÂvitro</i> involves the production of proinflammatory interleukinâ€6. Journal of Neurochemistry, 2016, 136, 564-572.	2.1	83
12	Cyclic Strain–Mediated Regulation of Vascular Endothelial Occludin and ZO-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 62-68.	1.1	80
13	Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvascular Research, 2015, 100, 48-53.	1.1	79
14	Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H28-H42.	1.5	71
15	Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Research, 2008, 1193, 84-92.	1.1	68
16	Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovascular Research, 2004, 63, 625-634.	1.8	64
17	The association of metalloendopeptidase EC 3.4.24.15 at the extracellular surface of the AtT-20 cell plasma membrane. Brain Research, 1999, 835, 113-124.	1.1	62
18	The Neuropeptide Processing Enzyme EC 3.4.24.15 Is Modulated by Protein Kinase A Phosphorylation. Journal of Biological Chemistry, 2000, 275, 36514-36522.	1.6	43

Philip M Cummins

#	Article	IF	CITATIONS
19	Ion-Exchange Chromatography: Basic Principles and Application. Methods in Molecular Biology, 2017, 1485, 209-223.	0.4	39
20	Zinc Coordination and Substrate Catalysis within the Neuropeptide Processing Enzyme Endopeptidase EC 3.4.24.15. Journal of Biological Chemistry, 1999, 274, 16003-16009.	1.6	36
21	The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: A review of the evidence. Atherosclerosis, 2016, 247, 87-96.	0.4	33
22	The endothelial microparticle response to a high fat meal is not attenuated by prior exercise. European Journal of Applied Physiology, 2009, 106, 555-562.	1.2	32
23	Gel-Filtration Chromatography. Methods in Molecular Biology, 2017, 1485, 15-25.	0.4	32
24	Bovine brain pyroglutamyl aminopeptidase (type-1): Purification and characterisation of a neuropeptide-inactivating peptidase. International Journal of Biochemistry and Cell Biology, 1996, 28, 883-893.	1.2	31
25	RANKL promotes osteoblastic activity in vascular smooth muscle cells by upregulating endothelial BMP-2 release. International Journal of Biochemistry and Cell Biology, 2016, 77, 171-180.	1.2	31
26	<i>Staphylococcus aureus</i> -mediated blood-brain barrier injury: an <i>in vitro</i> human brain microvascular endothelial cell model. Cellular Microbiology, 2017, 19, e12664.	1.1	29
27	<i>Helicobacter pylori</i> -induced inhibition of vascular endothelial cell functions: a role for VacA-dependent nitric oxide reduction. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1403-H1413.	1.5	26
28	The role of epigenetics in cardiovascular health and ageing: A focus on physical activity and nutrition. Mechanisms of Ageing and Development, 2018, 174, 76-85.	2.2	25
29	Shear-Dependent Attenuation of Cellular ROS Levels can Suppress Proinflammatory Cytokine Injury to Human Brain Microvascular Endothelial Barrier Properties. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1648-1656.	2.4	23
30	Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications, 2004, 320, 325-333.	1.0	21
31	Modulation of Nitric Oxide and 6-keto-Prostaglandin F1αProduction in Bovine Aortic Endothelial Cells by Conjugated Linoleic Acid. Endothelium: Journal of Endothelial Cell Research, 2004, 11, 211-220.	1.7	19
32	Moesin and merlin regulate urokinase receptor-dependent endothelial cell migration, adhesion and angiogenesis. International Journal of Biochemistry and Cell Biology, 2017, 88, 14-22.	1.2	19
33	The effects of insulin and liraglutide on osteoprotegerin and vascular calcification in vitro and in patients with type 2 diabetes. European Journal of Endocrinology, 2015, 173, 53-61.	1.9	17
34	Regulation of Thrombomodulin Expression and Release in Human Aortic Endothelial Cells by Cyclic Strain. PLoS ONE, 2014, 9, e108254.	1.1	17
35	Hydrophobic Interaction Chromatography. Methods in Molecular Biology, 2011, 681, 431-437.	0.4	16
36	Ion-Exchange Chromatography: Basic Principles and Application to the Partial Purification of Soluble Mammalian Prolyl Oligopeptidase. Methods in Molecular Biology, 2011, 681, 215-228.	0.4	16

Philip M Cummins

#	Article	IF	CITATIONS
37	Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: Role of cytokines and shear stress. Microvascular Research, 2015, 97, 1-5.	1.1	16
38	Down-regulation of neprilysin (EC3.4.24.11) expression in vascular endothelial cells by laminar shear stress involves NADPH oxidase-dependent ROS production. International Journal of Biochemistry and Cell Biology, 2009, 41, 2287-2294.	1.2	14
39	Pulse Pressure-Induced Transmural Fluid Flux Increases Bovine Aortic Smooth Muscle Cell Apoptosis in a Mitogen Activated Protein Kinase Dependent Manner. Journal of Vascular Research, 2004, 41, 364-374.	0.6	13
40	Regulation of Endopeptidases EC3.4.24.15 and EC3.4.24.16 in Vascular Endothelial Cells by Cyclic Strain: Role of Gi Protein Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 457-463.	1.1	12
41	Shear stress is a positive regulator of thimet oligopeptidase (EC3.4.24.15) in vascular endothelial cells: consequences for MHC1 levels. Cardiovascular Research, 2013, 99, 545-554.	1.8	12
42	Potential Diagnostic and Prognostic Biomarkers of Epigenetic Drift within the Cardiovascular Compartment. BioMed Research International, 2016, 2016, 1-10.	0.9	12
43	TRAIL attenuates RANKL-mediated osteoblastic signalling in vascular cell mono-culture and co-culture models. PLoS ONE, 2017, 12, e0188192.	1.1	11
44	RANKL Inhibits the Production of Osteoprotegerin from Smooth Muscle Cells under Basal Conditions and following Exposure to Cyclic Strain. Journal of Vascular Research, 2018, 55, 111-123.	0.6	9
45	A new addition to the renin-angiotensin peptide family: proAngiotensin-12 (PA12). Cardiovascular Research, 2009, 82, 7-8.	1.8	7
46	Hydrophobic Interaction Chromatography. Methods in Molecular Biology, 2017, 1485, 355-363.	0.4	7
47	Activation of the non-canonical NF-κB/p52 pathway in vascular endothelial cells by RANKL elicits pro-calcific signalling in co-cultured smooth muscle cells. Cellular Signalling, 2018, 47, 142-150.	1.7	7
48	Pulmonary endothelial permeability and tissue fluid balance depend on the viscosity of the perfusion solution. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L476-L484.	1.3	7
49	Microparticles: A Pivotal Nexus in Vascular Homeostasis and Disease. Current Clinical Pharmacology, 2016, 11, 28-42.	0.2	6
50	COMP-Ang1 Stabilizes Hyperglycemic Disruption of Blood-Retinal Barrier Phenotype in Human Retinal Microvascular Endothelial Cells. , 2019, 60, 3547.		6
51	Intravitreal AAV2.COMP-Ang1 Attenuates Deep Capillary Plexus Expansion in the Aged Diabetic Mouse Retina. , 2019, 60, 2494.		6
52	COMP-Ang1: Therapeutic potential of an engineered Angiopoietin-1 variant. Vascular Pharmacology, 2021, 141, 106919.	1.0	5
53	Hemodynamic Regulation of Metallopeptidases within the Vasculature. Protein and Peptide Letters, 2004, 11, 433-442.	0.4	5
54	TRAIL inhibits oxidative stress in human aortic endothelial cells exposed to proâ€inflammatory stimuli. Physiological Reports, 2020, 8, e14612.	0.7	4

#	Article	IF	CITATIONS
55	Identification of a Dipeptidyl Aminopeptidase Type- II in the cytosolic fraction of bovine brain. Biochemical Society Transactions, 1992, 20, 56S-56S.	1.6	3
56	In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. Neuromethods, 2019, , 71-98.	0.2	3
57	RANKL treatment of vascular endothelial cells leading to paracrine pro-calcific signaling involves ROS production. Molecular and Cellular Biochemistry, 2020, 464, 111-117.	1.4	2
58	Data on the regulation of moesin and merlin by the urokinase receptor (uPAR): Model explaining distal activation of integrins by uPAR. Data in Brief, 2017, 15, 600-605.	0.5	1