
Carla Distasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828145/publications.pdf Version: 2024-02-01

<u>CARLA DISTASI</u>

#	Article	IF	CITATIONS
1	P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium. Cancers, 2022, 14, 2743.	3.7	5
2	Deletion of calcineurin from astrocytes reproduces proteome signature of Alzheimer's disease and epilepsy and predisposes to seizures. Cell Calcium, 2021, 100, 102480.	2.4	6
3	Deletion of calcineurin from GFAPâ€expressing astrocytes impairs excitability of cerebellar and hippocampal neurons through astroglial Na ⁺ /K ⁺ ATPase. Glia, 2020, 68, 543-560.	4.9	22
4	Early Stimulation of TREK Channel Transcription and Activity Induced by Oxaliplatin-Dependent Cytosolic Acidification. International Journal of Molecular Sciences, 2020, 21, 7164.	4.1	2
5	Assessment of a Silicon-Photomultiplier-Based Platform for the Measurement of Intracellular Calcium Dynamics with Targeted Aequorin. ACS Sensors, 2020, 5, 2388-2397.	7.8	5
6	Proteomic analysis links alterations of bioenergetics, mitochondria-ER interactions and proteostasis in hippocampal astrocytes from 3xTg-AD mice. Cell Death and Disease, 2020, 11, 645.	6.3	48
7	The interaction of SiO ₂ nanoparticles with the neuronal cell membrane: activation of ionic channels and calcium influx. Nanomedicine, 2019, 14, 575-594.	3.3	7
8	SiO2 nanoparticles modulate the electrical activity of neuroendocrine cells without exerting genomic effects. Scientific Reports, 2018, 8, 2760.	3.3	9
9	Oxaliplatin induces pH acidification in dorsal root ganglia neurons. Scientific Reports, 2018, 8, 15084.	3.3	16
10	Transcriptional Remodeling in Primary Hippocampal Astrocytes from an Alzheimer's Disease Mouse Model. Current Alzheimer Research, 2018, 15, 986-1004.	1.4	15
11	Nanoparticles and potential neurotoxicity: focus on molecular mechanisms. AIMS Molecular Science, 2018, 5, 1-13.	0.5	26
12	Susceptibility of different mouse strains to oxaliplatin peripheral neurotoxicity: Phenotypic and genotypic insights. PLoS ONE, 2017, 12, e0186250.	2.5	52
13	Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1309-1319.	3.3	16
14	Calcium Signaling in Neuronal Motility: Pharmacological Tools for Investigating Specific Pathways. Current Medicinal Chemistry, 2012, 19, 5793-5801.	2.4	3
15	Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. Journal of Colloid and Interface Science, 2012, 369, 28-39.	9.4	93
16	Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. Journal of Neurochemistry, 2011, 116, 606-615.	3.9	28
17	Calcium signals: Analysis in time and frequency domains. Journal of Neuroscience Methods, 2011, 199, 310-320.	2.5	14
18	Novel adenosine and cAMP signalling pathways in migrating glial cells. Cell Calcium, 2010, 48, 83-90.	2.4	12

CARLA DISTASI

#	Article	IF	CITATIONS
19	Calcium signals activated by ghrelin and D-Lys3-GHRP-6 ghrelin antagonist in developing dorsal root ganglion glial cells. Cell Calcium, 2009, 46, 197-208.	2.4	24
20	Entropy measures of cellular aggregation. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2762-2770.	2.6	2
21	Calcineurin Primes Immature Gonadotropin-Releasing Hormone-Secreting Neuroendocrine Cells for Migration. Molecular Endocrinology, 2008, 22, 729-736.	3.7	7
22	Calcium signals and the in vitro migration of chick ciliary ganglion cells. Cell Calcium, 2006, 40, 63-71.	2.4	9
23	A transport mechanism for NAADP in a rat basophilic cell line. FASEB Journal, 2006, 20, 521-523.	0.5	47
24	A simple method to study cellular migration. Journal of Neuroscience Methods, 2005, 141, 271-276.	2.5	8
25	Calcium Signals Activated by Arachidonic Acid in Embryonic Chick Ciliary Ganglion Neurons. NeuroSignals, 2005, 14, 244-254.	0.9	9
26	A K+ channel activated by cholinergic muscarinic receptors in chick ciliary ganglion neurons at early developmental stage. Brain Research, 2003, 991, 262-266.	2.2	0
27	GDNF and bFGF are differentially involved in glial cell differentiation and neurite bundle formation in cultures from chick embryonic ciliary ganglia. NeuroReport, 2003, 14, 2343-2347.	1.2	2
28	A calcium-permeable channel activated by muscarinic acetylcholine receptors and InsP3 in developing chick ciliary ganglion neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1590, 109-122.	4.1	1
29	In vitro analysis of neuron-glial cell interactions during cellular migration. European Biophysics Journal, 2002, 31, 81-88.	2.2	20
30	In vitro identification of dividing neuronal precursors from chick embryonic ciliary ganglion. NeuroReport, 2000, 11, 1209-1212.	1.2	9
31	Neuronal survival and calcium influx induced by basic fibroblast growth factor in chick ciliary ganglion neurons. European Journal of Neuroscience, 1998, 10, 2276-2286.	2.6	29
32	Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts. Cell Calcium, 1997, 22, 179-188.	2.4	69
33	Sustained calcium influx activated by basic fibroblast growth factor in Balb 3T3 fibroblasts Journal of Physiology, 1995, 484, 557-566.	2.9	32
34	Basic Fibroblast Growth Factor Opens Calcium-Permeable Channels in Quail Mesencephalic Neural Crest Neurons. European Journal of Neuroscience, 1995, 7, 516-520.	2.6	19
35	Role of extracellular matrix molecules in the development of the sodium current in quail mesencephalic neural crest cells. Experientia, 1992, 48, 859-864.	1.2	2
36	Single-channel current simulation and recording using a photodiode as current generator. Journal of Neuroscience Methods, 1989, 26, 233-238.	2.5	3

#	Article	IF	CITATIONS
37	Potassium channels in mouse neonate dorsal root ganglion cells: a patch-clamp study. Brain Research, 1987, 412, 224-232.	2.2	27
38	Development of ionic channels during mouse neuronal differentiation. Journal De Physiologie, 1985, 80, 312-20.	0.2	5