Oh Kyu Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/182811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Organic Optoelectronic Materials: Harnessing Excitedâ€State Intramolecular Proton Transfer (ESIPT) Process. Advanced Materials, 2011, 23, 3615-3642.	11.1	992
2	A White-Light-Emitting Molecule: Frustrated Energy Transfer between Constituent Emitting Centers. Journal of the American Chemical Society, 2009, 131, 14043-14049.	6.6	553
3	Tailor-Made Highly Luminescent and Ambipolar Transporting Organic Mixed Stacked Charge-Transfer Crystals: An Isometric Donor–Acceptor Approach. Journal of the American Chemical Society, 2013, 135, 4757-4764.	6.6	288
4	An All‣mallâ€Molecule Organic Solar Cell with High Efficiency Nonfullerene Acceptor. Advanced Materials, 2015, 27, 1951-1956.	11.1	184
5	A High Efficiency Nonfullerene Organic Solar Cell with Optimized Crystalline Organizations. Advanced Materials, 2016, 28, 910-916.	11.1	179
6	Realizing Molecular Pixel System for Full-Color Fluorescence Reproduction: RGB-Emitting Molecular Mixture Free from Energy Transfer Crosstalk. Journal of the American Chemical Society, 2013, 135, 11239-11246.	6.6	165
7	High Energy Organic Cathode for Sodium Rechargeable Batteries. Chemistry of Materials, 2015, 27, 7258-7264.	3.2	160
8	Stimuliâ€Responsive Reversible Fluorescence Switching in a Crystalline Donor–Acceptor Mixture Film: Mixed Stack Chargeâ€Transfer Emission versus Segregated Stack Monomer Emission. Angewandte Chemie - International Edition, 2016, 55, 203-207.	7.2	147
9	Organic Lightâ€Emitting Diodes with a Whiteâ€Emitting Molecule: Emission Mechanism and Device Characteristics. Advanced Functional Materials, 2011, 21, 644-651.	7.8	133
10	Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions. Inorganic Chemistry, 2012, 51, 8760-8774.	1.9	119
11	Highly Luminescent 2Dâ€Type Slab Crystals Based on a Molecular Chargeâ€Transfer Complex as Promising Organic Lightâ€Emitting Transistor Materials. Advanced Materials, 2017, 29, 1701346.	11.1	111
12	Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chemical Science, 2017, 8, 734-741.	3.7	102
13	A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. Physical Chemistry Chemical Physics, 2014, 16, 10408-10413.	1.3	95
14	Strategic emission color tuning of highly fluorescent imidazole-based excited-state intramolecular proton transfer molecules. Physical Chemistry Chemical Physics, 2012, 14, 8878.	1.3	94
15	Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging. Materials Science and Engineering C, 2019, 102, 106-112.	3.8	87
16	Fully Reversible Multistate Fluorescence Switching: Organogel System Consisting of Luminescent Cyanostilbene and Turnâ€On Diarylethene. Advanced Functional Materials, 2018, 28, 1706213.	7.8	85
17	Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nature Communications, 2019, 10, 3089.	5.8	85
18	Photoisomerization-induced gel-to-sol transition and concomitant fluorescence switching in a transparent supramolecular gel of a cyanostilbene derivative. Chemical Science, 2014, 5, 4845-4850.	3.7	80

Он Күц Кwon

#	Article	IF	CITATIONS
19	Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3134-3140.	5.2	80
20	Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy and Environmental Science, 2020, 13, 4142-4156.	15.6	78
21	Soluble Dicyanodistyrylbenzeneâ€Based Nonâ€Fullerene Electron Acceptors with Optimized Aggregation Behavior for Highâ€Efficiency Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1400929.	10.2	72
22	Gelationâ€Induced Enhanced Fluorescence Emission from Organogels of Salicylanilideâ€Containing Compounds Exhibiting Excitedâ€State Intramolecular Proton Transfer: Synthesis and Selfâ€Assembly. Chemistry - A European Journal, 2010, 16, 7437-7447.	1.7	63
23	Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries. CheM, 2019, 5, 2642-2656.	5.8	61
24	High-Performance <i>n</i> -Type Organic Transistor with a Solution-Processed and Exfoliation-Transferred Two-Dimensional Crystalline Layered Film. Chemistry of Materials, 2012, 24, 3263-3268.	3.2	57
25	Wholly π-Conjugated Low-Molecular-Weight Organogelator That Displays Triple-Channel Responses to Fluoride Ions. Langmuir, 2014, 30, 2842-2851.	1.6	56
26	Structure–Property Correlation in Luminescent Indolo[3,2- <i>b</i>]indole (IDID) Derivatives: Unraveling the Mechanism of High Efficiency Thermally Activated Delayed Fluorescence (TADF). ACS Applied Materials & Interfaces, 2017, 9, 41413-41420.	4.0	52
27	Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films. Physical Chemistry Chemical Physics, 2014, 16, 16941-16956.	1.3	48
28	Utilizing Latent Multiâ€Redox Activity of pâ€Type Organic Cathode Materials toward High Energy Density Lithiumâ€Organic Batteries. Advanced Energy Materials, 2020, 10, 2001635.	10.2	47
29	Highly sensitive metal-enhanced fluorescence biosensor prepared on electrospun fibers decorated with silica-coated silver nanoparticles. Sensors and Actuators B: Chemical, 2019, 284, 140-147.	4.0	45
30	Excited State Features and Dynamics in a Distyrylbenzene-Based Mixed Stack Donor–Acceptor Cocrystal with Luminescent Charge Transfer Characteristics. Journal of Physical Chemistry Letters, 2015, 6, 3682-3687.	2.1	44
31	Excimer formation in organic emitter films associated with a molecular orientation promoted by steric hindrance. Chemical Communications, 2014, 50, 14145-14148.	2.2	43
32	High performance all-small-molecule solar cells: engineering the nanomorphology via processing additives. Journal of Materials Chemistry A, 2016, 4, 14234-14240.	5.2	43
33	Smart Fluorescent Nanoparticles in Water Showing Temperature-Dependent Ratiometric Fluorescence Color Change. ACS Applied Materials & Interfaces, 2017, 9, 2883-2890.	4.0	43
34	Crystallizationâ€Induced Emission Enhancement and Amplified Spontaneous Emission from a CF ₃ â€Containing Excitedâ€State Intramolecularâ€Protonâ€Transfer Molecule. Advanced Optical Materials, 2017, 5, 1700353.	3.6	41
35	Highly Sensitive and Selective Fluorescent Probe for Ascorbic Acid with a Broad Detection Range through Dual-Quenching and Bimodal Action of Nitronyl-Nitroxide. ACS Sensors, 2016, 1, 392-398.	4.0	39
36	Designing high performance all-small-molecule solar cells with non-fullerene acceptors: comprehensive studies on photoexcitation dynamics and charge separation kinetics. Energy and Environmental Science, 2018, 11, 211-220.	15.6	38

Он Күц Кwon

#	Article	IF	CITATIONS
37	pâ€Type Redoxâ€Active Organic Electrode Materials for Nextâ€Generation Rechargeable Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	35
38	The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: electronic effects <i>vs.</i> substituent-Li/Na ionic interaction. Journal of Materials Chemistry A, 2019, 7, 11438-11443.	5.2	33
39	Highly Fluorescent and Colorâ€Tunable Exciplex Emission from Poly(<i>N</i> â€vinylcarbazole) Film Containing Nanostructured Supramolecular Acceptors. Advanced Functional Materials, 2014, 24, 2746-2753.	7.8	31
40	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 5376-5380.	7.2	31
41	Is Color‧pecific Photoswitching in Dual olor Fluorescence Systems Possible? Manipulating Intermolecular Energy Transfer among Two Different Fluorophores and One Photoswitch. Advanced Optical Materials, 2016, 4, 790-797.	3.6	29
42	A Novel Bis-Lactam Acceptor with Outstanding Molar Extinction Coefficient and Structural Planarity for Donor–Acceptor Type Conjugated Polymer. Macromolecules, 2016, 49, 8489-8497.	2.2	26
43	Improvement of Electrical Conductivity in Conjugated Polymers through Cascade Doping with Smallâ€Molecular Dopants. Advanced Materials, 2020, 32, e2005129.	11.1	26
44	<i>s</i> â€Tetrazines as a New Electrodeâ€Active Material for Secondary Batteries. ChemSusChem, 2019, 12, 503-510.	3.6	25
45	Spectroscopic Studies on Intramolecular Charge-Transfer Characteristics in Small-Molecule Organic Solar Cell Donors: A Case Study on ADA and DAD Triad Donors. Journal of Physical Chemistry C, 2020, 124, 18502-18512.	1.5	24
46	A stereoregular β-dicyanodistyrylbenzene (β-DCS)-based conjugated polymer for high-performance organic solar cells with small energy loss and high quantum efficiency. Journal of Materials Chemistry A, 2017, 5, 16681-16688.	5.2	23
47	An exotic band structure of a supramolecular honeycomb lattice formed by a pancake ï€â€"ï€ interaction between triradical trianions of triptycene tribenzoquinone. Chemical Communications, 2018, 54, 3815-3818.	2.2	20
48	Characterization of food waste-driven carbon dot focusing on chemical structural, electron relaxation behavior and Fe3+ selective sensing. Data in Brief, 2019, 25, 104038.	0.5	20
49	Photoinduced structural changes of cationic azo dyes confined in a two dimensional nanospace by two different mechanisms. RSC Advances, 2017, 7, 8077-8081.	1.7	18
50	Signal-amplifying nanoparticle/hydrogel hybrid microarray biosensor for metal-enhanced fluorescence detection of organophosphorus compounds. Biofabrication, 2018, 10, 035002.	3.7	17
51	Highly fluorescent and water soluble turn-on type diarylethene for super-resolution bioimaging over a broad pH range. Dyes and Pigments, 2018, 158, 36-41.	2.0	15
52	NO ₂ -Affinitive Conjugated Polymer for Selective Sub-Parts-Per-Billion NO ₂ Detection in a Field-Effect Transistor Sensor. ACS Applied Materials & Interfaces, 2021, 13, 31910-31918.	4.0	15
53	Instantaneous detection of explosive and toxic nitroaromatic compounds <i>via</i> donor–acceptor complexation. Journal of Materials Chemistry C, 2019, 7, 9257-9262.	2.7	13
54	Highly persistent triphenylamine-based catholyte for durable organic redox flow batteries. Energy Storage Materials, 2021, 42, 185-192.	9.5	13

Он Күц Кwon

#	Article	IF	CITATIONS
55	An efficient nonfullerene acceptor for all-small-molecule solar cells with versatile processability in environmentally benign solvents. Organic Electronics, 2016, 30, 105-111.	1.4	12
56	Ultraâ€pHâ€Sensitive Small Molecule Probe Showing a Ratiometric Fluorescence Color Change. ChemPhotoChem, 2020, 4, 393-397.	1.5	11
57	Mellitic Triimides Showing Three Oneâ€Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li″on Batteries. ChemSusChem, 2020, 13, 2303-2311.	3.6	11
58	Redox Potential Tuning of s-Tetrazine by Substitution of Electron-Withdrawing/Donating Groups for Organic Electrode Materials. Molecules, 2021, 26, 894.	1.7	11
59	Strategic Approach for Enhancing Sensitivity of Ammonia Gas Detection: Molecular Design Rule and Morphology Optimization for Stable Radical Anion Formation of Rylene Diimide Semiconductors. Advanced Functional Materials, 2021, 31, 2101981.	7.8	10
60	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie, 2020, 132, 5414-5418.	1.6	10
61	A dopant-free donor–acceptor type semi-crystalline polymeric hole transporting material for superdurable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 12187-12195.	5.2	10
62	Instantaneous Detection of Trichlorinated Carbon via Photo-Induced Electron Transfer toward Chemosensor for Toxic Organochlorides. ACS Sensors, 2018, 3, 1831-1837.	4.0	8
63	Exploration of Molecular Shape-Dependent Luminescence Behavior: Fluorogenic Organic Nanoparticles Based on Bent Shaped Excited-State Intramolecular Proton-Transfer Dyes. ACS Applied Bio Materials, 2018, 1, 136-145.	2.3	8
64	NO ₂ â€Affinitive Amorphous Conjugated Polymer for Fieldâ€Effect Transistor Sensor toward Improved NO ₂ Detection Capability. Advanced Materials Technologies, 2021, 6, 2100580.	3.0	6
65	Threshold voltage modulation of polymer transistors by photoinduced charge–transfer between donor–acceptor dyads. Dyes and Pigments, 2017, 142, 387-393.	2.0	5
66	Effects of substituents on intermolecular interaction, morphology, and charge transport of novel bis-lactam-based molecules. Journal of Materials Chemistry C, 0, , .	2.7	5
67	Effect of Alkyl Chain Lengths of Highly Crystalline Nonfullerene Acceptors on Open-Circuit Voltage of All-Small-Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 259-267.	2.5	4
68	Designing Nonfullerene Acceptors with Oligo(Ethylene Glycol) Side Chains: Unraveling the Origin of Increased Openâ€Circuit Voltage and Balanced Charge Carrier Mobilities. Chemistry - an Asian Journal, 2021, 16, 2481-2488.	1.7	4
69	Comparative study on the intrinsic NO2 gas sensing capability of triarylamine-based amorphous organic semiconductors. Dyes and Pigments, 2021, 186, 109017.	2.0	3
70	Deep-red fluorescent poly(acrylic acid) hydrogel: Proton transfer to the water soluble dibasic luminescent dye followed by ion-pair formation. Dyes and Pigments, 2021, 188, 109223.	2.0	3
71	Sequential Codoping Making Nonconjugated Organic Radicals Conduct Ionically Electronically. Small Science, 2022, 2, .	5.8	3
72	In operando visualization of redox flow battery in membrane-free microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3

#	Article	IF	CITATIONS
73	Emission: Highly Fluorescent and Color-Tunable Exciplex Emission from Poly(N-vinylcarbazole) Film Containing Nanostructured Supramolecular Acceptors (Adv. Funct. Mater. 19/2014). Advanced Functional Materials, 2014, 24, 2745-2745.	7.8	1
74	Organic Light-Emitting Diodes: Organic Light-Emitting Diodes with a White-Emitting Molecule: Emission Mechanism and Device Characteristics (Adv. Funct. Mater. 4/2011). Advanced Functional Materials, 2011, 21, .	7.8	0