Stéphanie Durot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828005/publications.pdf

Version: 2024-02-01

471371 552653 1,191 27 17 26 citations h-index g-index papers 31 31 31 1758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photophysical and Computational Insights into Ag(I) Complexation of Porphyrinic Covalent Cages Equipped with Triazoles-Incorporating Linkers. Journal of Physical Chemistry B, 2022, 126, 3450-3459.	1.2	O
2	Allosteric Control of Naphthalene Diimide Encapsulation and Electron Transfer in Porphyrin Containers: Photophysical Studies and Molecular Dynamics Simulation. Chemistry - A European Journal, 2020, 26, 17514-17524.	1.7	7
3	A flexible bisâ€Co(III) porphyrin cage as a bimetallic catalyst for the conversion of CO ₂ and epoxides into cyclic carbonates. ChemCatChem, 2020, 12, 5826-5833.	1.8	9
4	Positive Allosteric Control of Guests Encapsulation by Metal Binding to Covalent Porphyrin Cages. Chemistry - A European Journal, 2019, 25, 1481-1487.	1.7	22
5	Photophysical properties of porphyrinic covalent cages endowed with different flexible linkers. Journal of Porphyrins and Phthalocyanines, 2019, 23, 841-849.	0.4	4
6	Frontispiece: Positive Allosteric Control of Guests Encapsulation by Metal Binding to Covalent Porphyrin Cages. Chemistry - A European Journal, 2019, 25, .	1.7	17
7	Interpretation of Experimental Soret Bands of Porphyrins in Flexible Covalent Cages and in Their Related Ag(I) Fixed Complexes. Journal of Physical Chemistry C, 2019, 123, 13094-13103.	1.5	17
8	Chemically Induced Breathing of Flexible Porphyrinic Covalent Cages. Journal of Organic Chemistry, 2017, 82, 5845-5851.	1.7	24
9	Highlight on the solution processes occurring on silver(<scp>i</scp>)-assembling porphyrins in the presence of an excess of silver salt. Dalton Transactions, 2017, 46, 9375-9381.	1.6	3
10	A Porphyrin Coordination Cage Assembled from Four Silver(I) Triazolylâ€Pyridine Complexes. Chemistry - A European Journal, 2015, 21, 15339-15348.	1.7	26
11	Control of the cavity size of flexible covalent cages by silver coordination to the peripheral binding sites. Chemical Communications, 2015, 51, 13181-13184.	2.2	27
12	Transition-Metal-Complexed Catenanes and Rotaxanes: From Dynamic Systems to Functional Molecular Machines. Topics in Current Chemistry, 2014, 354, 35-70.	4.0	23
13	Synthesis and Solution Studies of Silver(I)â€Assembled Porphyrin Coordination Cages. Chemistry - A European Journal, 2014, 20, 9979-9990.	1.7	14
14	Multiporphyrinic Cages: Architectures and Functions. Chemical Reviews, 2014, 114, 8542-8578.	23.0	246
15	Synthesis of [2]-, [3]-, and [4]rotaxanes whose axis contains two bidentate and two tridentate chelates. New Journal of Chemistry, 2011, 35, 2009.	1.4	10
16	Formation of copper(I)-templated [2]rotaxanes using "click―methodology: influence of the base, the thread and the catalyst. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 507-515.	1.6	8
17	Synthesis of [5]Rotaxanes Containing Bi―and Tridentate Coordination Sites in the Axis. Chemistry - A European Journal, 2011, 17, 947-957.	1.7	35
18	From chemical topology to molecular machines. Comptes Rendus Chimie, 2010, 13, 315-328.	0.2	33

#	Article	IF	CITATIONS
19	Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. Dalton Transactions, 2010, 39, 10557.	1.6	122
20	Synthesis of new copper(I)-complexed rotaxanes via click chemistry. Tetrahedron, 2008, 64, 8496-8503.	1.0	41
21	A Pulse Radiolysis Study of Catalytic Superoxide Radical Dismutation by a Manganese(II) Complex with an N-Tripodal Ligand. European Journal of Inorganic Chemistry, 2005, 2005, 2789-2793.	1.0	25
22	Series of Mn Complexes Based on N-Centered Ligands and Superoxide - Reactivity in an Anhydrous Medium and SOD-Like Activity in an Aqueous Medium Correlated to MnII/MnIII Redox Potentials. European Journal of Inorganic Chemistry, 2005, 2005, 3513-3523.	1.0	98
23	Copper(II) and Cobalt(III) Pyridoxal Thiosemicarbazone Complexes with Nitroprusside as Counterion:Â Syntheses, Electronic Properties, and Antileukemic Activity. Journal of Medicinal Chemistry, 2005, 48, 1671-1675.	2.9	124
24	Imidazole and Imidazolate Iron Complexes:Â On the Way for Tuning 3D-Structural Characteristics and Reactivity. Redox Interconversions Controlled by Protonation State. Inorganic Chemistry, 2004, 43, 4178-4188.	1.9	59
25	Structural and Magnetic Properties of Carboxylato-Bridged Manganese(II) Complexes Involving Tetradentate Ligands:Â Discrete Complex and 1D Polymers. Dependence of Jon the Nature of the Carboxylato Bridge. Inorganic Chemistry, 2003, 42, 8072-8080.	1.9	105
26	New MnII Complexes with an N/O Coordination Sphere from TripodalN-Centered Ligands â^' Characterization from Solid State to Solution and Reaction with Superoxide in Non-Aqueous and Aqueous Media. European Journal of Inorganic Chemistry, 2001, 2001, 1807-1818.	1.0	43
27	TTF based charge transfer salts of [M(NCS)4(C9H7N)2]â^' where Mâ€=â€Cr, Fe and C9H7Nâ€=â€isoquin observation of bulk ferrimagnetic order. Dalton Transactions RSC, 2000, , 905-909.	oling; 2.3	48