
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimation of Seasonal Influenza Attack Rates and Antibody Dynamics in Children Using Cross-Sectional Serological Data. Journal of Infectious Diseases, 2022, 225, 1750-1754.	1.9	10
2	Unexposed populations and potential COVID-19 hospitalisations and deaths in European countries as per data up to 21 November 2021. Eurosurveillance, 2022, 27, .	3.9	8
3	SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort. PLoS Biology, 2022, 20, e3001531.	2.6	10
4	Effective surveillance of variants. Science, 2022, 375, 1349-1350.	6.0	4
5	The impact of local vaccine coverage and recent incidence on measles transmission in France between 2009 and 2018. BMC Medicine, 2022, 20, 77.	2.3	8
6	Travel measures in the SARS-CoV-2 variant era need clear objectives. Lancet, The, 2022, 399, 1367-1369.	6.3	17
7	Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and control in large-scale multi-day events. Nature Communications, 2022, 13, 1956.	5.8	8
8	Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health, The, 2021, 6, e12-e20.	4.7	153
9	The importance of local context in COVID-19 models. Nature Computational Science, 2021, 1, 6-8.	3.8	19
10	Time to evaluate COVID-19 contact-tracing apps. Nature Medicine, 2021, 27, 361-362.	15.2	71
11	Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet, The, 2021, 397, 452-455.	6.3	720
12	Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health, The, 2021, 6, e175-e183.	4.7	156
13	Interactions between timing and transmissibility explain diverse flavivirus dynamics in Fiji. Nature Communications, 2021, 12, 1671.	5.8	3
14	Estimating the effectiveness of routine asymptomatic PCR testing at different frequencies for the detection of SARS-CoV-2 infections. BMC Medicine, 2021, 19, 106.	2.3	105
15	Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 2021, 372, .	6.0	2,103
16	The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant. Eurosurveillance, 2021, 26, .	3.9	30
17	Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Research, 2021, 6, 138.	0.9	3
18	Serological Evidence of Widespread Zika Transmission across the Philippines. Viruses, 2021, 13, 1441.	1.5	5

#	Article	IF	CITATIONS
19	Detecting behavioural changes in human movement to inform the spatial scale of interventions against COVID-19. PLoS Computational Biology, 2021, 17, e1009162.	1.5	22
20	Transmission modelling of environmentally persistent zoonotic diseases: a systematic review. Lancet Planetary Health, The, 2021, 5, e466-e478.	5.1	19
21	Case-area targeted interventions (CATI) for reactive dengue control: Modelling effectiveness of vector control and prophylactic drugs in Singapore. PLoS Neglected Tropical Diseases, 2021, 15, e0009562.	1.3	3
22	Estimating the annual dengue force of infection from the age of reporting primary infections across urban centres in endemic countries. BMC Medicine, 2021, 19, 217.	2.3	6
23	Serial intervals in SARS-CoV-2 B.1.617.2 variant cases. Lancet, The, 2021, 398, 837-838.	6.3	52
24	Sharing, synthesis and sustainability of data analysis for epidemic preparedness in Europe. Lancet Regional Health - Europe, The, 2021, 9, 100215.	3.0	7
25	Epidemiological and Immunological Features of Obesity and SARS-CoV-2. Viruses, 2021, 13, 2235.	1.5	15
26	Within and between classroom transmission patterns of seasonal influenza among primary school students in Matsumoto city, Japan. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
27	Infodemics: A new challenge for public health. Cell, 2021, 184, 6010-6014.	13.5	56
28	Low chikungunya virus seroprevalence two years after emergence in Fiji. International Journal of Infectious Diseases, 2020, 90, 223-225.	1.5	9
29	Response strategies for COVID-19 epidemics in African settings: a mathematical modelling study. BMC Medicine, 2020, 18, 324.	2.3	66
30	Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Medicine, 2020, 18, 332.	2.3	129
31	Changing travel patterns in China during the early stages of the COVID-19 pandemic. Nature Communications, 2020, 11, 5012.	5.8	86
32	A serological framework to investigate acute primary and post-primary dengue cases reporting across the Philippines. BMC Medicine, 2020, 18, 364.	2.3	7
33	Using a real-world network to model localized COVID-19 control strategies. Nature Medicine, 2020, 26, 1616-1622.	15.2	191
34	Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health, The, 2020, 5, e375-e385.	4.7	730
35	Using serological data to understand unobserved SARS-CoV-2 risk in health-care settings. Lancet Infectious Diseases, The, 2020, 20, 1351-1352.	4.6	11
36	Probabilistic reconstruction of measles transmission clusters from routinely collected surveillance data. Journal of the Royal Society Interface, 2020, 17, 20200084.	1.5	7

#	Article	IF	CITATIONS
37	The effect of travel restrictions on the geographical spread of COVID-19 between large cities in China: a modelling study. BMC Medicine, 2020, 18, 259.	2.3	28
38	An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver. PLoS Computational Biology, 2020, 16, e1007840.	1.5	13
39	Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infectious Diseases, The, 2020, 20, 1151-1160.	4.6	710
40	Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infectious Diseases, The, 2020, 20, 553-558.	4.6	1,999
41	The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health, The, 2020, 5, e261-e270.	4.7	1,600
42	Secondary attack rate and superspreading events for SARS-CoV-2. Lancet, The, 2020, 395, e47.	6.3	315
43	Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 2020, 8, e488-e496.	2.9	2,067
44	Invisible spread of SARS-CoV-2 – Authors' reply. Lancet Infectious Diseases, The, 2020, 20, 1012.	4.6	0
45	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 2020, 5, 239.	0.9	61
46	The effectiveness of social bubbles as part of a Covid-19 lockdown exit strategy, a modelling study. Wellcome Open Research, 2020, 5, 213.	0.9	33
47	Inferring the number of COVID-19 cases from recently reported deaths. Wellcome Open Research, 2020, 5, 78.	0.9	31
48	Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Research, 2020, 5, 67.	0.9	265
49	Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Research, 2020, 5, 67.	0.9	539
50	The effectiveness of social bubbles as part of a Covid-19 lockdown exit strategy, a modelling study. Wellcome Open Research, 2020, 5, 213.	0.9	35
51	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 2020, 5, 239.	0.9	62
52	The COVID-19 response illustrates that traditional academic reward structures and metrics do not reflect crucial contributions to modern science. PLoS Biology, 2020, 18, e3000913.	2.6	12
53	Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Eurosurveillance, 2020, 25, .	3.9	389
54	Zika seroprevalence declines and neutralizing antibodies wane in adults following outbreaks in French Polynesia and Fiji. ELife, 2020, 9, .	2.8	23

#	Article	IF	CITATIONS
55	Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. ELife, 2020, 9, .	2.8	307
56	The contribution of asymptomatic SARS-CoV-2 infections to transmission on the Diamond Princess cruise ship. ELife, 2020, 9, .	2.8	70
57	Towards a unified generic framework to define and observe contacts between livestock and wildlife: a systematic review. PeerJ, 2020, 8, e10221.	0.9	10
58	Title is missing!. , 2020, 16, e1007840.		0
59	Title is missing!. , 2020, 16, e1007840.		0
60	Title is missing!. , 2020, 16, e1007840.		0
61	Title is missing!. , 2020, 16, e1007840.		0
62	Title is missing!. , 2020, 16, e1007840.		0
63	Sustained Low-Level Transmission of Zika and Chikungunya Viruses after Emergence in the Fiji Islands. Emerging Infectious Diseases, 2019, 25, 1535-1538.	2.0	21
64	An online decision tree for vaccine efficacy trial design during infectious disease epidemics: The InterVax-Tool. Vaccine, 2019, 37, 4376-4381.	1.7	11
65	Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Medicine, 2019, 17, 172.	2.3	38
66	The measles crisis in Europe—the need for a joined-up approach. Lancet, The, 2019, 393, 2033.	6.3	10
67	Real-time analysis of the diphtheria outbreak in forcibly displaced Myanmar nationals in Bangladesh. BMC Medicine, 2019, 17, 58.	2.3	37
68	Determinants of Transmission Risk During the Late Stage of the West African Ebola Epidemic. American Journal of Epidemiology, 2019, 188, 1319-1327.	1.6	11
69	Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15. PLoS Computational Biology, 2019, 15, e1006785.	1.5	74
70	Fine-scale family structure shapes influenza transmission risk in households: Insights from primary schools in Matsumoto city, 2014/15. PLoS Computational Biology, 2019, 15, e1007589.	1.5	31
71	Blaski i cienie peregrynacji w cudzych krajach. Podróż edukacyjna Kazimierza Rzewuskiego (1766-1768). , 2019, 48, 61.	0.0	0
72	Title is missing!. , 2019, 15, e1007589.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2019, 15, e1007589.		Ο
74	Title is missing!. , 2019, 15, e1007589.		0
75	Title is missing!. , 2019, 15, e1007589.		Ο
76	Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics, 2018, 22, 56-61.	1.5	98
77	Structure and consistency of self-reported social contact networks in British secondary schools. PLoS ONE, 2018, 13, e0200090.	1.1	10
78	Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Medicine, 2018, 16, 180.	2.3	53
79	Expected Duration of Adverse Pregnancy Outcomes after Zika Epidemic. Emerging Infectious Diseases, 2018, 24, 127-130.	2.0	5
80	Identifying human encounters that shape the transmission of Streptococcus pneumoniae and other acute respiratory infections. Epidemics, 2018, 25, 72-79.	1.5	29
81	Timescales of influenza A/H3N2 antibody dynamics. PLoS Biology, 2018, 16, e2004974.	2.6	46
82	Ten simple rules for writing a popular science book. PLoS Computational Biology, 2018, 14, e1005808.	1.5	2
83	Using paired serology and surveillance data to quantify dengue transmission and control during a large outbreak in Fiji. ELife, 2018, 7, .	2.8	23
84	The impact of control strategies and behavioural changes on the elimination of Ebola from Lofa County, Liberia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160302.	1.8	66
85	Reducing uncertainty about flavivirus infections. Lancet Infectious Diseases, The, 2017, 17, 13-15.	4.6	4
86	High Zika Virus Seroprevalence in Salvador, Northeastern Brazil Limits the Potential for Further Outbreaks. MBio, 2017, 8, .	1.8	183
87	Ring vaccination with rVSV-ZEBOV under expanded access in response to an outbreak of Ebola virus disease in Guinea, 2016: an operational and vaccine safety report. Lancet Infectious Diseases, The, 2017, 17, 1276-1284.	4.6	79
88	The role of human immunity and social behavior in shaping influenza evolution. PLoS Pathogens, 2017, 13, e1006432.	2.1	11
89	Social mixing in Fiji: Who-eats-with-whom contact patterns and the implications of age and ethnic heterogeneity for disease dynamics in the Pacific Islands. PLoS ONE, 2017, 12, e0186911.	1.1	8
90	Effectiveness of Ring Vaccination as Control Strategy for Ebola Virus Disease. Emerging Infectious Diseases, 2016, 22, 105-108.	2.0	83

#	Article	IF	CITATIONS
91	Transmission Dynamics of Zika Virus in Island Populations: A Modelling Analysis of the 2013–14 French Polynesia Outbreak. PLoS Neglected Tropical Diseases, 2016, 10, e0004726.	1.3	217
92	Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus. PLoS Neglected Tropical Diseases, 2016, 10, e0005173.	1.3	70
93	The Effect of Community-Based Prevention and Care on Ebola Transmission in Sierra Leone. American Journal of Public Health, 2016, 106, 727-732.	1.5	29
94	Study epidemiology of fake news. Nature, 2016, 540, 525-525.	13.7	102
95	Low risk of a sexually-transmitted Zika virus outbreak. Lancet Infectious Diseases, The, 2016, 16, 1100-1102.	4.6	55
96	Capturing the dynamics of pathogens with many strains. Journal of Mathematical Biology, 2016, 72, 1-24.	0.8	69
97	Estimating the probability of demonstrating vaccine efficacy in the declining Ebola epidemic: a Bayesian modelling approach. BMJ Open, 2015, 5, e009346.	0.8	22
98	Animal Ownership and Touching Enrich the Context of Social Contacts Relevant to the Spread of Human Infectious Diseases. PLoS ONE, 2015, 10, e0133461.	1.1	13
99	Ebola virus disease in the Democratic Republic of the Congo, 1976-2014. ELife, 2015, 4, .	2.8	61
100	Characterizing the Transmission Potential of Zoonotic Infections from Minor Outbreaks. PLoS Computational Biology, 2015, 11, e1004154.	1.5	24
101	Estimating the Life Course of Influenza A(H3N2) Antibody Responses from Cross-Sectional Data. PLoS Biology, 2015, 13, e1002082.	2.6	129
102	Evaluation of the Benefits and Risks of Introducing Ebola Community Care Centers, Sierra Leone. Emerging Infectious Diseases, 2015, 21, 393-399.	2.0	54
103	Measuring the impact of Ebola control measures in Sierra Leone. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14366-14371.	3.3	93
104	Five challenges in modelling interacting strain dynamics. Epidemics, 2015, 10, 31-34.	1.5	21
105	Temporal Changes in Ebola Transmission in Sierra Leone and Implications for Control Requirements: a Real-time Modelling Study. PLOS Currents, 2015, 7, .	1.4	94
106	School's Out: Seasonal Variation in the Movement Patterns of School Children. PLoS ONE, 2015, 10, e0128070.	1.1	18
107	Effectiveness of traveller screening for emerging pathogens is shaped by epidemiology and natural history of infection. ELife, 2015, 4, .	2.8	49
108	The Contribution of Social Behaviour to the Transmission of Influenza A in a Human Population. PLoS Pathogens, 2014, 10, e1004206.	2.1	84

#	Article	IF	CITATIONS
109	Potential for large outbreaks of Ebola virus disease. Epidemics, 2014, 9, 70-78.	1.5	128
110	Case fatality rate for Ebola virus disease in west Africa. Lancet, The, 2014, 384, 1260.	6.3	94
111	Distinguishing Between Reservoir Exposure and Human-to-Human Transmission for Emerging Pathogens Using Case Onset Data. PLOS Currents, 2014, 6, .	1.4	21
112	The Role of Social Contacts and Original Antigenic Sin in Shaping the Age Pattern of Immunity to Seasonal Influenza. PLoS Computational Biology, 2012, 8, e1002741.	1.5	27
113	Influenza emergence in the face of evolutionary constraints. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 645-652.	1.2	22
114	Age profile of immunity to influenza: Effect of original antigenic sin. Theoretical Population Biology, 2012, 81, 102-112.	0.5	27
115	o2geosocial: Reconstructing who-infected-whom from routinely collected surveillance data. F1000Research, 0, 10, 31.	0.8	0
116	Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, 0, 5, 239.	0.9	5
117	o2geosocial: Reconstructing who-infected-whom from routinely collected surveillance data. F1000Research, 0, 10, 31.	0.8	1
118	Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Research, 0, 5, 67.	0.9	30
119	Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, 0, 5, 112.	0.9	117
120	Lektury oÅ›wieconego wojażera-Sarmaty w Å›wietle katalogu ksiÄg zabranych w podróż przez Seweryna Rzewuskiego (1778). Folia Toruniensia, 0, 17, 45.	0.0	1
121	Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Research, 0, 6, 138.	0.9	5
122	Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Research, 0, 6, 138.	0.9	3