Gregory Chatel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative cleavage of cycloalkenes using hydrogen peroxide and a tungsten-based catalyst: towards a complete mechanistic investigation. New Journal of Chemistry, 2021, 45, 235-242.	1.4	5
2	Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions. Clean Technologies, 2021, 3, 335-350.	1.9	23
3	Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. Waste Management, 2020, 102, 782-794.	3.7	56
4	Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Topics in Current Chemistry, 2020, 378, 2.	3.0	31
5	Subcritical water and supercritical carbon dioxide: efficient and selective eco-compatible solvents for coffee and coffee by-products valorization. Green Chemistry, 2020, 22, 8544-8571.	4.6	34
6	Oxidative cyclization of linoleic acid in the presence of hydrogen peroxide and phosphotungstic acid. Molecular Catalysis, 2020, 493, 111084.	1.0	1
7	Chemists around the World, Take Your Part in the Circular Economy!. Chemistry - A European Journal, 2020, 26, 9665-9673.	1.7	10
8	Selective dihydroxylation of methyl oleate to methyl-9,10-dihydroxystearate in the presence of a recyclable tungsten based catalyst and hydrogen peroxide. New Journal of Chemistry, 2020, 44, 11507-11512.	1.4	4
9	Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals, 2020, 13, 23.	1.7	42
10	Sonochemistry in nanocatalysis: The use of ultrasound from the catalyst synthesis to the catalytic reaction. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 1-6.	3.2	39
11	Recent trends in the development of sustainable catalytic systems for the oxidative cleavage of cycloalkenes by hydrogen peroxide. Catalysis Science and Technology, 2019, 9, 5256-5278.	2.1	24
12	<i>trans</i> -Resveratrol and <i>trans</i> -ε-Viniferin in Grape Canes and Stocks Originating from Savoie Mont Blanc Vineyard Region: Pre-extraction Parameters for Improved Recovery. ACS Sustainable Chemistry and Engineering, 2019, 7, 8310-8316.	3.2	16
13	Effect of Ultrasound on the Green Selective Oxidation of Benzyl Alcohol to Benzaldehyde. Molecules, 2019, 24, 4157.	1.7	13
14	Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 2019, 21, 6043-6050.	4.6	58
15	High frequency ultrasound as a tool for elucidating mechanistic elements of cis-cyclooctene epoxidation with aqueous hydrogen peroxide. Ultrasonics Sonochemistry, 2019, 53, 120-125.	3.8	11
16	How sonochemistry contributes to green chemistry?. Ultrasonics Sonochemistry, 2018, 40, 117-122.	3.8	126
17	Catalystâ€Free Synthesis of Alkylpolyglycosides Induced by Highâ€Frequency Ultrasound. ChemSusChem, 2018, 11, 2673-2676.	3.6	12
18	Ultrasound-Assisted Synthesis of Nanostructured Oxide Materials. Advances in Chemical and Materials Engineering Book Series, 2018, , 177-215.	0.2	5

GREGORY CHATEL

#	Article	IF	CITATIONS
19	Sonochemistry: from Basic Principles to Innovative Applications. Topics in Current Chemistry, 2017, 375, 8.	3.0	45
20	Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound. Scientific Reports, 2017, 7, 40650.	1.6	46
21	A Combined Approach using Sonochemistry and Photocatalysis: How to Apply Sonophotocatalysis for Biomass Conversion?. ChemCatChem, 2017, 9, 2615-2621.	1.8	38
22	Amphiphilic dipyridinium-phosphotungstate as an efficient and recyclable catalyst for triphasic fatty ester epoxidation and oxidative cleavage with hydrogen peroxide. Green Chemistry, 2017, 19, 2855-2862.	4.6	26
23	Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives. Topics in Current Chemistry, 2017, 375, 41.	3.0	41
24	Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide. Green Chemistry, 2017, 19, 98-101.	4.6	73
25	Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrasonics Sonochemistry, 2017, 36, 27-35.	3.8	47
26	Avoid the PCB mistakes: A more sustainable future for ionic liquids. Journal of Hazardous Materials, 2017, 324, 773-780.	6.5	63
27	Sonochemistry. , 2017, , .		28
28	Effect of low frequency ultrasound on the surface properties of natural aluminosilicates. Ultrasonics Sonochemistry, 2016, 31, 598-609.	3.8	16
29	Depolymerization of cellulose to processable glucans by non-thermal technologies. Green Chemistry, 2016, 18, 3903-3913.	4.6	59
30	Ultrasound in Combination with Ionic Liquids: Studied Applications and Perspectives. Topics in Current Chemistry, 2016, 374, 51.	3.0	12
31	Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends?. Green Chemistry, 2016, 18, 1839-1854.	4.6	321
32	How efficiently combine sonochemistry and clay science?. Applied Clay Science, 2016, 119, 193-201.	2.6	34
33	Ionic Fluids Containing Both Strongly and Weakly Interacting Ions of the Same Charge Have Unique Ionic and Chemical Environments as a Function of Ion Concentration. ChemPhysChem, 2015, 16, 993-1002.	1.0	27
34	Contribution of Deep Eutectic Solvents for Biomass Processing: Opportunities, Challenges, and Limitations. ChemCatChem, 2015, 7, 1250-1260.	1.8	180
35	Green, selective and swift oxidation of cyclic alcohols to corresponding ketones. Applied Catalysis A: General, 2014, 478, 157-164.	2.2	35
36	Mixing ionic liquids – "simple mixtures―or "double salts�. Green Chemistry, 2014, 16, 2051.	4.6	289

GREGORY CHATEL

#	Article	IF	CITATIONS
37	Review: Oxidation of Lignin Using Ionic Liquids—An Innovative Strategy To Produce Renewable Chemicals. ACS Sustainable Chemistry and Engineering, 2014, 2, 322-339.	3.2	290
38	Sonochemistry: What Potential for Conversion of Lignocellulosic Biomass into Platform Chemicals?. ChemSusChem, 2014, 7, 2774-2787.	3.6	64
39	Efficient and Selective Oxidation of <scp>D</scp> â€Glucose into Gluconic acid under Lowâ€Frequency Ultrasonic Irradiation. ChemCatChem, 2014, 6, 3355-3359.	1.8	36
40	lonic liquids and ultrasound in combination: synergies and challenges. Chemical Society Reviews, 2014, 43, 8132-8149.	18.7	118
41	Evaluating Ionic Liquids as Hypergolic Fuels: Exploring Reactivity from Molecular Structure. Energy & Fuels, 2014, 28, 3460-3473.	2.5	76
42	Facile pulping of lignocellulosic biomass using choline acetate. Bioresource Technology, 2014, 164, 394-401.	4.8	53
43	Hydrophobic Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids Pyrolysis: Through the Window of the Ultrasonic Reactor. ACS Sustainable Chemistry and Engineering, 2013, 1, 137-143.	3.2	22
44	Ultrasonic Properties of Hydrophobic Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2012, 57, 3385-3390.	1.0	25
45	Template-free electrodeposition of tellurium nanostructures in a room-temperature ionic liquid. Electrochemistry Communications, 2012, 24, 57-60.	2.3	36
46	H2O2/NaHCO3-mediated enantioselective epoxidation of olefins in NTf2-based ionic liquids and under ultrasound. Journal of Catalysis, 2012, 291, 127-132.	3.1	43
47	Ultrasound and ionic liquid: An efficient combination to tune the mechanism of alkenes epoxidation. Ultrasonics Sonochemistry, 2012, 19, 390-394.	3.8	30
48	Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: A systematic study. Journal of Hazardous Materials, 2012, 215-216, 40-48.	6.5	117
49	French Young Chemists' Network: Two Years Already!. ChemistryViews, 0, , .	0.0	0
50	Expectations of Younger Chemists in France. ChemistryViews, 0, , .	0.0	0
51	Chemistry and the Circular Economy. ChemistryViews, 0, , .	0.0	0