## Etsushi Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827890/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.                                                                                                           | 8.1  | 1,675     |
| 2  | Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.                                                                                                                | 3.7  | 1,477     |
| 3  | Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.                                                                                                                | 3.7  | 1,167     |
| 4  | Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.                                                                                                                | 3.7  | 1,159     |
| 5  | MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 2011, 4, 845-872.                                                        | 1.3  | 1,070     |
| 6  | The dominant role of semi-arid ecosystems in the trend and variability of the land CO <sub>2</sub> sink. Science, 2015, 348, 895-899.                                                     | 6.0  | 1,002     |
| 7  | Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.                                                                                         | 8.1  | 973       |
| 8  | Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.                                                                                                                   | 3.7  | 905       |
| 9  | Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.                                                                                                                  | 3.7  | 801       |
| 10 | Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5, eaax1396.                                                                       | 4.7  | 755       |
| 11 | Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.                                                                                                                | 3.7  | 663       |
| 12 | Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.                                                                                                                   | 3.7  | 616       |
| 13 | The global carbon budget 1959–2011. Earth System Science Data, 2013, 5, 165-185.                                                                                                          | 3.7  | 527       |
| 14 | Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541, 516-520.                                                                           | 13.7 | 480       |
| 15 | Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.                                                                                                                     | 3.7  | 463       |
| 16 | Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in<br>CMIP5 Projections for the Twenty-First Century. Journal of Climate, 2013, 26, 6859-6881. | 1.2  | 329       |
| 17 | Recent global decline of CO <sub>2</sub> fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.                                                               | 6.0  | 317       |
| 18 | Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.                                                                                                                   | 3.7  | 311       |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed.<br>Nature Geoscience, 2017, 10, 79-84.                                                                              | 5.4  | 284       |
| 20 | An emission pathway for stabilization at 6ÂWmâ^'2 radiative forcing. Climatic Change, 2011, 109, 59-76.                                                                                                              | 1.7  | 270       |
| 21 | Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth<br>System Models under Four Representative Concentration Pathways. Journal of Climate, 2013, 26,<br>4398-4413.          | 1.2  | 248       |
| 22 | Widespread seasonal compensation effects of spring warming on northern plant productivity.<br>Nature, 2018, 562, 110-114.                                                                                            | 13.7 | 240       |
| 23 | Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10,<br>356-362.                                                                                                    | 8.1  | 152       |
| 24 | Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote<br>sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24,<br>1485-1509. | 1.9  | 130       |
| 25 | Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change, 2020, 163, 1553-1568.                                            | 1.7  | 112       |
| 26 | Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. Journal of Land Use Science, 2013, 8, 104-122.                                 | 1.0  | 104       |
| 27 | Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature<br>Climate Change, 2018, 8, 914-920.                                                                              | 8.1  | 101       |
| 28 | Allocation of Resources to Reproduction in Styrax obassia in a Masting Year. Annals of Botany, 2002, 89, 767-772.                                                                                                    | 1.4  | 86        |
| 29 | Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in<br>Northern Brazil. Agricultural and Forest Meteorology, 2016, 228-229, 286-298.                               | 1.9  | 75        |
| 30 | Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth System Dynamics, 2014, 5, 309-319.                                                        | 2.7  | 65        |
| 31 | Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.       | 1.8  | 63        |
| 32 | Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges. Energy, 2019, 167, 1120-1131.                                                                                           | 4.5  | 59        |
| 33 | Sources of Uncertainty in Regional and Global Terrestrial CO <sub>2</sub> Exchange Estimates.<br>Global Biogeochemical Cycles, 2020, 34, e2019GB006393.                                                              | 1.9  | 59        |
| 34 | Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 2017, 14, 5053-5067.                                                                      | 1.3  | 58        |
| 35 | Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific Reports, 2016, 6, 39748.                                                     | 1.6  | 57        |
| 36 | Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth System Dynamics, 2014, 5, 197-209.                                                                 | 2.7  | 53        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <scp>BECCS</scp> capability of dedicated bioenergy crops under a future landâ€use scenario targeting<br>net negative carbon emissions. Earth's Future, 2014, 2, 421-439.                                                 | 2.4 | 52        |
| 38 | Slowdown of the greening trend in natural vegetation with further rise in atmospheric<br>CO <sub>2</sub> . Biogeosciences, 2021, 18, 4985-5010.                                                                          | 1.3 | 49        |
| 39 | State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial<br>CO <sub>2</sub> budget. Global Change Biology, 2020, 26, 1068-1084.                                                           | 4.2 | 43        |
| 40 | Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size, and local floral<br>density. American Journal of Botany, 1999, 86, 495-501.                                                   | 0.8 | 42        |
| 41 | Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results. Earth System Dynamics, 2015, 6, 435-445. | 2.7 | 40        |
| 42 | Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275, 47-58.                                                   | 1.9 | 40        |
| 43 | The terrestrial carbon budget of South and Southeast Asia. Environmental Research Letters, 2016, 11, 105006.                                                                                                             | 2.2 | 39        |
| 44 | Climateâ€Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global<br>Products. Global Biogeochemical Cycles, 2020, 34, e2020GB006613.                                               | 1.9 | 36        |
| 45 | Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO <sub>2</sub> Uptake. Geophysical<br>Research Letters, 2018, 45, 4820-4830.                                                                            | 1.5 | 32        |
| 46 | Implications of climate change mitigation strategies on international bioenergy trade. Climatic<br>Change, 2020, 163, 1639-1658.                                                                                         | 1.7 | 32        |
| 47 | EMF 35 JMIP study for Japan's long-term climate and energy policy: scenario designs and key findings.<br>Sustainability Science, 2021, 16, 355-374.                                                                      | 2.5 | 32        |
| 48 | Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental<br>Research Letters, 2016, 11, 074011.                                                                                      | 2.2 | 31        |
| 49 | Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study. Climatic<br>Change, 2020, 163, 1603-1620.                                                                                   | 1.7 | 31        |
| 50 | Contrasting effects of CO <sub>2</sub> fertilization, land-use change and<br>warming on seasonal amplitude of Northern Hemisphere CO <sub>2</sub><br>exchange. Atmospheric Chemistry and Physics, 2019, 19, 12361-12375. | 1.9 | 30        |
| 51 | EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change, 2020, 163, 1621-1637.                                                                                                             | 1.7 | 30        |
| 52 | Emission pathways to achieve 2.0°C and 1.5°C climate targets. Earth's Future, 2017, 5, 592-604.                                                                                                                          | 2.4 | 28        |
| 53 | Putting Costs of Direct Air Capture in Context. SSRN Electronic Journal, 0, , .                                                                                                                                          | 0.4 | 28        |
| 54 | Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast<br>Asia. Nature Communications, 2018, 9, 1154.                                                                         | 5.8 | 28        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evaluation of Japanese energy system toward 2050 with TIMES-Japan – deep decarbonization pathways.<br>Energy Procedia, 2019, 158, 4141-4146.                                                               | 1.8 | 28        |
| 56 | Modeling in Earth system science up to and beyond IPCC AR5. Progress in Earth and Planetary Science, 2014, 1, .                                                                                            | 1.1 | 27        |
| 57 | Enterotoxigenicity of Staphylococcus aureus Strains Isolated from Chickens. Journal of Food<br>Protection, 1980, 43, 683-686.                                                                              | 0.8 | 26        |
| 58 | Competitive effects of the exotic Bombus terrestris on native bumble bees revealed by a field removal experiment. Population Ecology, 2010, 52, 123-136.                                                   | 0.7 | 26        |
| 59 | Role of CO <sub>2</sub> , climate and land use in regulating the seasonal<br>amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. Biogeosciences,<br>2016, 13, 5121-5137. | 1.3 | 26        |
| 60 | The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences, 2016, 13, 223-238.                                                                                            | 1.3 | 24        |
| 61 | Role of negative emissions technologies (NETs) and innovative technologies in transition of Japan's energy systems toward net-zero CO2 emissions. Sustainability Science, 2021, 16, 463-475.               | 2.5 | 24        |
| 62 | Assessing the representation of the Australian carbon cycle in global vegetation models.<br>Biogeosciences, 2021, 18, 5639-5668.                                                                           | 1.3 | 21        |
| 63 | Abundance, body size, and morphology of bumblebees in an area where an exotic species, Bombus<br>terrestris, has colonized in Japan. Ecological Research, 2007, 22, 331-341.                               | 0.7 | 18        |
| 64 | The role of renewables in the Japanese power sector: implications from the EMF35 JMIP. Sustainability Science, 2021, 16, 375-392.                                                                          | 2.5 | 16        |
| 65 | Industrial decarbonization under Japan's national mitigation scenarios: a multi-model analysis.<br>Sustainability Science, 2021, 16, 411-427.                                                              | 2.5 | 15        |
| 66 | Response to Comments on "Recent global decline of CO <sub>2</sub> fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg7484.                                                        | 6.0 | 15        |
| 67 | Causes of slowingâ€down seasonal CO <sub>2</sub> amplitude at Mauna Loa. Global Change Biology,<br>2020, 26, 4462-4477.                                                                                    | 4.2 | 14        |
| 68 | Demand-side decarbonization and electrification: EMF 35 JMIP study. Sustainability Science, 2021, 16, 395-410.                                                                                             | 2.5 | 14        |
| 69 | MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geoscientific Model Development, 2020, 13, 4713-4747.                | 1.3 | 14        |
| 70 | Current status and future of land surface models. Soil Science and Plant Nutrition, 2015, 61, 34-47.                                                                                                       | 0.8 | 13        |
| 71 | Key factors for achieving emission reduction goals cognizant of CCS. International Journal of Greenhouse Gas Control, 2020, 99, 103097.                                                                    | 2.3 | 12        |
| 72 | Climate Change, Allowable Emission, and Earth System Response to Representative Concentration<br>Pathway Scenarios. Journal of the Meteorological Society of Japan, 2012, 90, 417-434.                     | 0.7 | 12        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Linking global terrestrial CO <sub>2</sub> fluxes and environmental<br>drivers: inferences from the Orbiting Carbon ObservatoryÂ2 satellite and terrestrial biospheric<br>models. Atmospheric Chemistry and Physics, 2021, 21, 6663-6680. | 1.9 | 10        |
| 74 | Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size, and local floral density. American Journal of Botany, 1999, 86, 495-501.                                                                       | 0.8 | 10        |
| 75 | Development of spatially explicit emission scenario from land-use change and biomass burning for the input data of climate projection. Procedia Environmental Sciences, 2011, 6, 146-152.                                                 | 1.3 | 8         |
| 76 | Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon<br>Observatory-2 and process-based models. Environmental Research Letters, 2021, 16, 054041.                                         | 2.2 | 8         |
| 77 | Job creation in response to Japan's energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models. Applied Energy, 2022, 318, 119178.                                                       | 5.1 | 8         |
| 78 | Investigating the rankâ€ <b>s</b> ize relationship of urban areas using land cover maps. Geophysical Research<br>Letters, 2008, 35, .                                                                                                     | 1.5 | 7         |
| 79 | A Sustainable Pathway of Bioenergy with Carbon Capture and Storage Deployment. Energy Procedia, 2017, 114, 6115-6123.                                                                                                                     | 1.8 | 7         |
| 80 | Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO 2 measurements<br>from 1999 to 2017. Global Change Biology, 2020, 26, 3368-3383.                                                                        | 4.2 | 7         |
| 81 | Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil. Climatic Change, 2022, 170, 1.                                                                        | 1.7 | 7         |
| 82 | Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Clobal Biogeochemical<br>Cycles, 2022, 36, .                                                                                                                  | 1.9 | 7         |
| 83 | Role of NETs and carbon recycling technologies in the transitions of Japan's energy systems toward net-zero CO2 emissions goal. SSRN Electronic Journal, 0, , .                                                                           | 0.4 | 1         |
| 84 | The Paris Agreement and Climate Change Countermeasure Technologies. Kagaku Kogaku Ronbunshu,<br>2017, 43, 171-177.                                                                                                                        | 0.1 | 0         |
| 85 | Establishment of a simple method to search natural products that suppress α-glucosidase amount in intestinal epithelial cell. Planta Medica International Open, 2017, 4, .                                                                | 0.3 | 0         |
| 86 | Efficient and Sustainable Use of Technologies and Feedstock for Beccs Deployment in Mitigation Pathways. SSRN Electronic Journal, 0, , .                                                                                                  | 0.4 | 0         |