
Marija Backovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827703/publications.pdf Version: 2024-02-01

MARIA RACKOVIC

#	Article	IF	CITATIONS
1	Antibodies Targeting KSHV gH/gL Reveal Distinct Neutralization Mechanisms. Viruses, 2022, 14, 541.	3.3	7
2	Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. Journal of Experimental Medicine, 2022, 219, .	8.5	34
3	Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe, The, 2021, 2, e60-e69.	7.3	78
4	Prior infection by seasonal coronaviruses, as assessed by serology, does not prevent SARS-CoV-2 infection and disease in children, France, April to June 2020. Eurosurveillance, 2021, 26, .	7.0	29
5	<i>In Vitro</i> Viral Evolution Identifies a Critical Residue in the Alphaherpesvirus Fusion Glycoprotein B Ectodomain That Controls gH/gL-Independent Entry. MBio, 2021, 12, .	4.1	14
6	Kinetics of the Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Response and Serological Estimation of Time Since Infection. Journal of Infectious Diseases, 2021, 224, 1489-1499.	4.0	32
7	Human herpesvirus 8 molecular mimicry of ephrin ligands facilitates cell entry and triggers EphA2 signaling. PLoS Biology, 2021, 19, e3001392.	5.6	7
8	The prefusion structure of herpes simplex virus glycoprotein B. Science Advances, 2020, 6, .	10.3	50
9	Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. One Health, 2020, 10, 100164.	3.4	99
10	Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathogens, 2020, 16, e1008560.	4.7	16
11	A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations. Science Translational Medicine, 2020, 12, .	12.4	228
12	Title is missing!. , 2020, 16, e1008560.		0
13	Title is missing!. , 2020, 16, e1008560.		0
14	Title is missing!. , 2020, 16, e1008560.		0
15	Title is missing!. , 2020, 16, e1008560.		0
16	Title is missing!. , 2020, 16, e1008560.		0
17	Title is missing!. , 2020, 16, e1008560.		0
18	Title is missing!. , 2020, 16, e1008560.		0

2

Marija Backovic

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008560.		Ο
20	Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Advances in Virus Research, 2019, 104, 225-281.	2.1	25
21	X-ray Structures of the Post-fusion 6-Helix Bundle of the Human Syncytins and their Functional Implications. Journal of Molecular Biology, 2019, 431, 4922-4940.	4.2	6
22	Structure-Function Dissection of Pseudorabies Virus Glycoprotein B Fusion Loops. Journal of Virology, 2018, 92, .	3.4	45
23	A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion. Science, 2017, 358, 663-667.	12.6	66
24	The Therapeutic Antibody LM609 Selectively Inhibits Ligand Binding to Human αVβ3 Integrin via Steric Hindrance. Structure, 2017, 25, 1732-1739.e5.	3.3	24
25	Functional Characterization of Glycoprotein H Chimeras Composed of Conserved Domains of the Pseudorabies Virus and Herpes Simplex Virus 1 Homologs. Journal of Virology, 2016, 90, 421-432.	3.4	15
26	Stable Drosophila Cell Lines: An Alternative Approach to Exogenous Protein Expression. Methods in Molecular Biology, 2016, 1350, 349-358.	0.9	24
27	Structure-Based Functional Analyses of Domains II and III of Pseudorabies Virus Glycoprotein H. Journal of Virology, 2015, 89, 1364-1376.	3.4	17
28	A replication defect of pseudorabies virus induced by targeted α-helix distortion in the syntaxin-like bundle of glycoprotein H (V275P) is corrected by an adjacent compensatory mutation (V271A). Journal of General Virology, 2015, 96, 2349-2354.	2.9	3
29	The Highly Conserved Proline at Position 438 in Pseudorabies Virus gH Is Important for Regulation of Membrane Fusion. Journal of Virology, 2014, 88, 13064-13072.	3.4	13
30	Structure-Based Mutational Analysis of the Highly Conserved Domain IV of Glycoprotein H of Pseudorabies Virus. Journal of Virology, 2012, 86, 8002-8013.	3.4	20
31	Virus entry: old viruses, new receptors. Current Opinion in Virology, 2012, 2, 4-13.	5.4	28
32	Class III Viral Membrane Fusion Proteins. Advances in Experimental Medicine and Biology, 2011, 714, 91-101.	1.6	44
33	Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22635-22640.	7.1	76
34	Efficient method for production of high yields of Fab fragments in Drosophila S2 cells. Protein Engineering, Design and Selection, 2010, 23, 169-174.	2.1	20
35	Analysis of Epstein-Barr Virus Glycoprotein B Functional Domains via Linker Insertion Mutagenesis. Journal of Virology, 2009, 83, 734-747.	3.4	27
36	Structure of a trimeric variant of the Epstein–Barr virus glycoprotein B. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2880-2885.	7.1	199

Marija Backovic

#	Article	IF	CITATIONS
37	Class III viral membrane fusion proteins. Current Opinion in Structural Biology, 2009, 19, 189-196.	5.7	123
38	Pseudorabies virus glycoprotein B can be used to carry foot and mouth disease antigens in DNA vaccination of pigs. Antiviral Research, 2009, 81, 217-225.	4.1	8
39	Hydrophobic Residues That Form Putative Fusion Loops of Epstein-Barr Virus Glycoprotein B Are Critical for Fusion Activity. Journal of Virology, 2007, 81, 9596-9600.	3.4	55
40	Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology, 2007, 368, 102-113.	2.4	34
41	Use of NMR to study serpin function. Methods, 2004, 32, 120-129.	3.8	6
42	Insight into Residues Critical for Antithrombin Function from Analysis of an Expanded Database of Sequences That Includes Frog, Turtle, and Ostrich Antithrombins. Journal of Proteome Research, 2002, 1, 367-373.	3.7	26
43	Structural similarity of the covalent complexes formed between the serpin plasminogen activator inhibitor-1 and the arginine-specific proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA: Use of site-specific fluorescent probes of local environment. Protein Science, 2002, 11, 1182-1191.	7.6	14
44	Formation of Insoluble Oligomers Correlates with ST6Gal I Stable Localization in the Golgi. Journal of Biological Chemistry, 2000, 275, 13819-13826.	3.4	46