David J Strozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827674/publications.pdf

Version: 2024-02-01

101 papers 3,351 citations

35 h-index 54 g-index

106 all docs

106
docs citations

106 times ranked 1450 citing authors

#	Article	IF	CITATIONS
1	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	16.7	87
2	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	27.8	233
3	Magnetized ICF implosions: Scaling of temperature and yield enhancement. Physics of Plasmas, 2022, 29,	1.9	15
4	Magnetized laser–plasma interactions in high-energy-density systems: Parallel propagation. Physics of Plasmas, 2022, 29, .	1.9	2
5	The Magnetized Indirect Drive Project on the National Ignition Facility. Journal of Fusion Energy, 2022, 41, 1.	1.2	14
6	Exploring implosion designs for increased compression on the National Ignition Facility using high density carbon ablators. Physics of Plasmas, 2022, 29, .	1.9	15
7	Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .	1.9	4
8	Magnetized ICF Implosions: Scaling of Temperature and Yield Enhancement. , 2022, , .		0
9	Modeling High-Yield Magnetized Implosions on the National Ignition Facility. , 2022, , .		O
10	Laser transport and backscatter in low-density SiO2 and Ta2O5 foams. Physics of Plasmas, 2021, 28, .	1.9	6
11	Application of plasma optics to precision control of laser energy deposition in laser-fusion experiments. , 2021, , .		O
12	Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions. Review of Scientific Instruments, 2021, 92, 043543.	1.3	12
13	Single and double shell ignition targets for the national ignition facility at 527 nm. Physics of Plasmas, 2021, 28, .	1.9	3
14	The effects of multispecies <i>Hohlraum</i> walls on stimulated Brillouin scattering, <i>Hohlraum</i> dynamics, and beam propagation. Physics of Plasmas, 2021, 28, .	1.9	6
15	Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Physics of Plasmas, 2021, 28, .	1.9	55
16	Reaching 30% energy coupling efficiency for a high-density-carbon capsule in a gold rugby hohlraum on NIF. Nuclear Fusion, 2021, 61, 086028.	3.5	4
17	Stopping-power enhancement from discrete particle-wake correlations in high-energy-density plasmas. Physical Review E, 2021, 104, 035203.	2.1	0
18	Record Energetics for an Inertial Fusion Implosion at NIF. Physical Review Letters, 2021, 126, 025001.	7.8	76

#	Article	IF	Citations
19	Impact of the Langdon effect on crossed-beam energy transfer. Nature Physics, 2020, 16, 181-185.	16.7	37
20	Symmetry tuning and high energy coupling for an Al capsule in a Au rugby hohlraum on NIF. Physics of Plasmas, 2020, 27, .	1.9	5
21	Integrated performance of large HDC-capsule implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	22
22	Hot-spot mix in large-scale HDC implosions at NIF. Physics of Plasmas, 2020, 27, .	1.9	46
23	Principal factors in performance of indirect-drive laser fusion experiments. Physics of Plasmas, 2020, 27, .	1.9	7
24	Deficiencies in compression and yield in x-ray-driven implosions. Physics of Plasmas, 2020, 27, .	1.9	12
25	Transient magnetic field diffusion considerations relevant to magnetically assisted indirect drive inertial confinement fusion. Physics of Plasmas, 2020, 27, 112711.	1.9	25
26	Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility. Physical Review E, 2020, 102, 023210.	2.1	25
27	Symmetric fielding of the largest diamond capsule implosions on the NIF. Physics of Plasmas, 2020, 27, .	1.9	28
28	Beryllium implosions at smaller case-to-capsule ratio on NIF. High Energy Density Physics, 2020, 34, 100747.	1.5	6
29	Experiments to explore the influence of pulse shaping at the National Ignition Facility. Physics of Plasmas, 2020, 27, 112708.	1.9	11
30	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
31	Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum. Physics of Plasmas, 2019, 26, .	1.9	25
32	Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility. Physics of Plasmas, 2019, 26, .	1.9	28
33	Enhanced energy coupling for indirectly driven inertial confinement fusion. Nature Physics, 2019, 15, 138-141.	16.7	32
34	Heat transport modeling of the dot spectroscopy platform on NIF. Plasma Physics and Controlled Fusion, 2018, 60, 044009.	2.1	20
35	The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling. Physics of Plasmas, 2018, 25, .	1.9	90
36	A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions. Physics of Plasmas, 2018, 25, 033114.	1.9	9

#	Article	IF	Citations
37	A plasma amplifier to combine multiple beams at NIF. Physics of Plasmas, 2018, 25, .	1.9	17
38	Plasma-based beam combiner for very high fluence and energy. Nature Physics, 2018, 14, 80-84.	16.7	50
39	Energy transfer between lasers in low-gas-fill-density hohlraums. Physical Review E, 2018, 98, .	2.1	27
40	High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility. Physical Review Letters, 2018, 121, 135001.	7.8	86
41	Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility. Physics of Plasmas, 2018, 25, .	1.9	20
42	Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. Physical Review Letters, 2018, 120, 245003.	7.8	205
43	Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics. Physical Review Letters, 2017, 118, 025002.	7.8	60
44	The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility. Physics of Plasmas, 2017, 24, .	1.9	55
45	Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment. Physics of Plasmas, 2017, 24, .	1.9	44
46	Progress towards a more predictive model for hohlraum radiation drive and symmetry. Physics of Plasmas, 2017, 24, 056312.	1.9	64
47	Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Physics of Plasmas, 2017, 24, .	1.9	106
48	The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Physics of Plasmas, 2017, 24, .	1.9	64
49	Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility. Physics of Plasmas, 2017, 24, .	1.9	14
50	Positron radiography of ignition-relevant ICF capsules. Physics of Plasmas, 2017, 24, .	1.9	3
51	NIF Rugby High Foot Campaign from the design side. Journal of Physics: Conference Series, 2016, 717, 012035.	0.4	4
52	First beryllium capsule implosions on the National Ignition Facility. Physics of Plasmas, 2016, 23, 056310.	1.9	37
53	Developing one-dimensional implosions for inertial confinement fusion science. High Power Laser Science and Engineering, 2016, 4, .	4.6	5
54	The near vacuum hohlraum campaign at the NIF: A new approach. Physics of Plasmas, 2016, 23, .	1.9	51

#	Article	IF	Citations
55	Experimental room temperature hohlraum performance study on the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	6
56	Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Physics, 2016, 12, 800-806.	16.7	144
57	Imposed magnetic field and hot electron propagation in inertial fusion hohlraums. Journal of Plasma Physics, 2015, 81, .	2.1	23
58	Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments. Physics of Plasmas, 2015, 22, 122701.	1.9	9
59	Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration. Physics of Plasmas, 2014, 21, .	1.9	36
60	Progress in hohlraum physics for the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	62
61	Probing matter at Gbar pressures at the NIF. High Energy Density Physics, 2014, 10, 27-34.	1.5	52
62	A PIC-Fluid Hybrid Algorithm for Multiscale Simulations of Laser-Plasma Interactions. IEEE Transactions on Plasma Science, 2014, 42, 1335-1338.	1.3	0
63	Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas. Physical Review Letters, 2013, 111, 025001.	7.8	14
64	Measurement of High-Pressure Shock Waves in Cryogenic Deuterium-Tritium Ice Layered Capsule Implosions on NIF. Physical Review Letters, 2013, 111, 065003.	7.8	28
65	Hohlraum energetics scaling to 520 TW on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	59
66	Saturation mechanisms of backward stimulated Raman scattering in a one-dimensional geometry. Physics of Plasmas, 2013, 20, 103103.	1.9	18
67	Fast ignition: Dependence of the ignition energy on source and target parameters for particle-in-cell-modelled energy and angular distributions of the fast electrons. Physics of Plasmas, 2013, 20, .	1.9	16
68	A grid-based binary model for coulomb collisions in plasmas. Journal of Computational Physics, 2013, 234, 33-43.	3.8	13
69	Progress toward ignition at the National Ignition Facility. Plasma Physics and Controlled Fusion, 2013, 55, 124015.	2.1	23
70	Cone-guided fast ignition withnoimposed magnetic fields. EPJ Web of Conferences, 2013, 59, 03012.	0.3	0
71	Progress and prospects for an IFE relevant FI point design. EPJ Web of Conferences, 2013, 59, 03011.	0.3	0
72	Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas. Physics of Plasmas, 2012, 19, .	1.9	18

#	Article	IF	CITATIONS
73	Implosion and burn of fast ignition capsulesâ€"Calculations with HYDRA. Physics of Plasmas, 2012, 19, 092706.	1.9	15
74	Threshold for electron trapping nonlinearity in Langmuir waves. Physics of Plasmas, 2012, 19, .	1.9	20
75	Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Physics of Plasmas, 2012, 19, 072711.	1.9	107
76	The velocity campaign for ignition on NIF. Physics of Plasmas, 2012, 19, .	1.9	76
77	Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nature Physics, 2012, 8, 344-349.	16.7	104
78	Nonlinear Envelope Equation and Nonlinear Landau Damping Rate for a Driven Electron Plasma Wave. Transport Theory and Statistical Physics, 2011, 40, 185-224.	0.4	5
79	Studies of particle wake potentials in plasmas. High Energy Density Physics, 2011, 7, 191-196.	1.5	3
80	Fast ignition transport simulations for NIF. Journal of Physics: Conference Series, 2010, 244, 022065.	0.4	0
81	Features of a point design for Fast Ignition. Journal of Physics: Conference Series, 2010, 244, 022066.	0.4	2
82	Nonlinear group velocity of an electron plasma wave. Physics of Plasmas, 2010, 17, 082301.	1.9	18
83	Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations. Physics of Plasmas, 2010, 17, .	1.9	17
84	Analyses of laser-plasma interactions in NIF ignition emulator designs. Journal of Physics: Conference Series, 2010, 244, 022019.	0.4	1
85	High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums. Physics of Plasmas, 2010, 17, 056313.	1.9	20
86	Particle-in-cell simulations of kinetic effects in plasma-based backward Raman amplification in underdense plasmas. Physics of Plasmas, 2010, 17, .	1.9	17
87	Self-Organization and Threshold of Stimulated Raman Scattering. Physical Review Letters, 2010, 105, 015001.	7.8	17
88	Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled <i>Hohlraums</i> . Physics of Plasmas, 2010, 17, .	1.9	51
89	Assessing the 2i‰peinstability and other preheat considerations in ignition-scale hohlraums. Journal of Physics: Conference Series, 2010, 244, 022020.	0.4	1
90	Experimental Evidence of Predominantly Transverse Electron Plasma Waves Driven by Stimulated Raman Scattering of Picosecond Laser Pulses. Physical Review Letters, 2009, 102, 185003.	7.8	41

#	Article	IF	CITATIONS
91	Kinetic dispersion of Langmuir waves. I. The Langmuir decay instability. Physics of Plasmas, 2009, 16, 092304.	1.9	12
92	Nonlinear Landau Damping Rate of a Driven Plasma Wave. Physical Review Letters, 2009, 103, 155002.	7.8	35
93	Breakdown of electrostatic predictions for the nonlinear dispersion relation of a stimulated Raman scattering driven plasma wave. Physics of Plasmas, 2008, 15 , .	1.9	36
94	Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments. Physics of Plasmas, 2008, 15, 056313.	1.9	19
95	Ray-based calculations of backscatter in laser fusion targets. Physics of Plasmas, 2008, 15, .	1.9	51
96	Direct Measurements of an Increased Threshold for Stimulated Brillouin Scattering with Polarization Smoothing in Ignition Hohlraum Plasmas. Physical Review Letters, 2008, 101, 115002.	7.8	27
97	Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter. Physics of Plasmas, 2007, 14, 013104.	1.9	55
98	Vlasov simulations of trapping and inhomogeneity in Raman scattering. Journal of Plasma Physics, 2006, 72, 1299.	2.1	10
99	Study of laser plasma interactions using an Eulerian Vlasov code. Computer Physics Communications, 2004, 164, 156-159.	7.5	14
100	Coherent acceleration of magnetized ions by electrostatic waves with arbitrary wavenumbers. Physics of Plasmas, 2003, 10, 2722-2731.	1.9	16
101	Drift wave test particle transport in reversed shear profile. Physics of Plasmas, 1998, 5, 3910-3917.	1.9	60