
Siglinda Perathoner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redesign chemical processes to substitute the use of fossil fuels: A viewpoint of the implications on catalysis. Catalysis Today, 2022, 387, 216-223.	2.2	20
2	Hydrogenation of dimethyl oxalate to ethylene glycol on Cu/SiO2 catalysts prepared by a deposition-decomposition method: Optimization of the operating conditions and pre-reduction procedure. Catalysis Today, 2022, 390-391, 343-353.	2.2	9
3	Zeolite templated carbon from Beta replica as metal-free electrocatalyst for CO2 reduction. Applied Materials Today, 2022, 26, 101383.	2.3	1
4	Electrocatalytic production of glycolic acid via oxalic acid reduction on titania debris supported on a TiO2 nanotube array. Journal of Energy Chemistry, 2022, 68, 669-678.	7.1	14
5	Catalysis for <i>e</i> -Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis. ACS Catalysis, 2022, 12, 2861-2876.	5.5	44
6	Transforming catalysis to produce e-fuels: Prospects and gaps. Chinese Journal of Catalysis, 2022, 43, 1194-1203.	6.9	15
7	Assessment of hydrogen production from municipal solid wastes as competitive route to produce low-carbon H2. Science of the Total Environment, 2022, 827, 154393.	3.9	11
8	Dynamics at Polarized Carbon Dioxide–Iron Oxyhydroxide Interfaces Unveil the Origin of Multicarbon Product Formation. ACS Catalysis, 2022, 12, 411-430.	5.5	19
9	Catalytic Technologies for the Conversion and Reuse of CO2. , 2022, , 1803-1852.		1
10	Reduction of Non-CO2 Greenhouse Gas Emissions by Catalytic Processes. , 2022, , 1759-1802.		0
11	Revealing the role of edges in the electrocatalytic synthesis of H2O2 over metal-free nanocarbon. Chem Catalysis, 2022, 2, 1251-1253.	2.9	0
12	A novel gas flow-through photocatalytic reactor based on copper-functionalized nanomembranes for the photoreduction of CO2 to C1-C2 carboxylic acids and C1-C3 alcohols. Chemical Engineering Journal, 2021, 408, 127250.	6.6	31
13	High performance of Au/ZTC based catalysts for the selective oxidation of bio-derivative furfural to 2-furoic acid. Catalysis Communications, 2021, 149, 106234.	1.6	30
14	Reuse of CO ₂ in energy intensive process industries. Chemical Communications, 2021, 57, 10967-10982.	2.2	29
15	Reduction of Non-CO2 Greenhouse Gas Emissions by Catalytic Processes. , 2021, , 1-44.		0
16	Peptide Gelators to Template Inorganic Nanoparticle Formation. Gels, 2021, 7, 14.	2.1	17
17	Nanocarbon for Energy Material Applications: N ₂ Reduction Reaction. Small, 2021, 17, e2007055.	5.2	26
18	Green Approaches to Carbon Nanostructure-Based Biomaterials. Applied Sciences (Switzerland), 2021, 11, 2490.	1.3	26

#	Article	IF	CITATIONS
19	Role of nanostructure in the behaviour of BiVO4–TiO2 nanotube photoanodes for solar water splitting in relation to operational conditions. Solar Energy Materials and Solar Cells, 2021, 223, 110980.	3.0	4
20	Tuning the Chemical Properties of Co–Ti ₃ C ₂ T <i>_x</i> MXene Materials for Catalytic CO ₂ Reduction. Small, 2021, 17, e2007509.	5.2	35
21	Supported metallic nanoparticles prepared by an organometallic route to boost the electrocatalytic conversion of CO2. Journal of CO2 Utilization, 2021, 50, 101613.	3.3	5
22	Carbon Nanostructures Decorated with Titania: Morphological Control and Applications. Applied Sciences (Switzerland), 2021, 11, 6814.	1.3	5
23	Catalytic Technologies for the Conversion and Reuse of CO2. , 2021, , 1-50.		0
24	Comparing Molecular Mechanisms in Solar NH3 Production and Relations with CO2 Reduction. International Journal of Molecular Sciences, 2021, 22, 139.	1.8	12
25	Current density in solar fuel technologies. Energy and Environmental Science, 2021, 14, 5760-5787.	15.6	32
26	Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis. Journal of CO2 Utilization, 2021, 54, 101775.	3.3	13
27	Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources. Catalysis Today, 2020, 342, 4-12.	2.2	57
28	Electrocatalytic reduction of CO2 over dendritic-type Cu- and Fe-based electrodes prepared by electrodeposition. Journal of CO2 Utilization, 2020, 35, 194-204.	3.3	20
29	Artificial leaves using sunlight to produce fuels. Studies in Surface Science and Catalysis, 2020, 179, 415-430.	1.5	1
30	Highly selective bifunctional Ni zeo-type catalysts for hydroprocessing of methyl palmitate to green diesel. Catalysis Today, 2020, 345, 14-21.	2.2	31
31	Enhancing N ₂ Fixation Activity by Converting Ti ₃ C ₂ MXenes Nanosheets to Nanoribbons. ChemSusChem, 2020, 13, 5614-5619.	3.6	26
32	Creation of N-C=O active groups on N-doped CNT as an efficient CarboCatalyst for solvent-free aerobic coupling of benzylamine. Carbon, 2020, 170, 338-346.	5.4	27
33	Economics of CO2 Utilization: A Critical Analysis. Frontiers in Energy Research, 2020, 8, .	1.2	38
34	Direct Synthesis of Ammonia from N ₂ and H ₂ O on Different Iron Species Supported on Carbon Nanotubes using a Gasâ€Phase Electrocatalytic Flow Reactor. ChemElectroChem, 2020, 7, 3028-3037.	1.7	12
35	Weakly acidic zeolites: A review on uses and relationship between nature of the active sites and catalytic behaviour. Microporous and Mesoporous Materials, 2020, 300, 110157.	2.2	16
36	Enhanced performance in the direct electrocatalytic synthesis of ammonia from N2 and H2O by an in-situ electrochemical activation of CNT-supported iron oxide nanoparticles. Journal of Energy Chemistry, 2020, 49, 22-32.	7.1	31

#	Article	IF	CITATIONS
37	Elucidating the mechanism of the CO ₂ methanation reaction over Ni–Fe hydrotalcite-derived catalysts <i>via</i> surface-sensitive <i>in situ</i> XPS and NEXAFS. Physical Chemistry Chemical Physics, 2020, 22, 18788-18797.	1.3	29
38	2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Advanced Materials, 2019, 31, e1801712.	11.1	88
39	Etherification of HMF to biodiesel additives: The role of NH4+ confinement in Beta zeolites. Journal of Energy Chemistry, 2019, 36, 114-121.	7.1	13
40	Deactivation mechanism of hydrotalcite-derived Ni–AlO _x catalysts during low-temperature CO ₂ methanation <i>via</i> Ni-hydroxide formation and the role of Fe in limiting this effect. Catalysis Science and Technology, 2019, 9, 4023-4035.	2.1	47
41	CO ₂ Reduction of Hybrid Cu ₂ O–Cu/Gas Diffusion Layer Electrodes and their Integration in a Cuâ€based Photoelectrocatalytic Cell. ChemSusChem, 2019, 12, 4274-4284.	3.6	39
42	Reassembly mechanism in Fe-Silicalite during NH4OH post-treatment and relation with the acidity and catalytic reactivity. Applied Catalysis A: General, 2019, 580, 186-196.	2.2	22
43	Unconventional Pathways for Designing Silica-Supported Pt and Pd Catalysts With Hierarchical Porosity. Studies in Surface Science and Catalysis, 2019, , 377-397.	1.5	7
44	Turning carbon dioxide into fuel concomitantly to the photoanode-driven process of organic pollutant degradation by photoelectrocatalysis. Electrochimica Acta, 2019, 306, 277-284.	2.6	21
45	Production of Solar Fuels Using CO2. Studies in Surface Science and Catalysis, 2019, , 7-30.	1.5	11
46	Electrochemical Dinitrogen Activation: To Find a Sustainable Way to Produce Ammonia. Studies in Surface Science and Catalysis, 2019, 178, 31-46.	1.5	20
47	Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. BMC Chemical Engineering, 2019, 1, .	3.4	46
48	CO2 Methanation: Principles and Challenges. Studies in Surface Science and Catalysis, 2019, , 85-103.	1.5	54
49	Highly Efficient Metal-Free Nitrogen-Doped Nanocarbons with Unexpected Active Sites for Aerobic Catalytic Reactions. ACS Nano, 2019, 13, 13995-14004.	7.3	29
50	Direct Synthesis of H2O2on Pd Based Catalysts: Modelling the Particle Size Effects and the Promoting Role of Polyvinyl Alcohol. ChemCatChem, 2019, 11, 550-559.	1.8	12
51	Catalysis for solar-driven chemistry: The role of electrocatalysis. Catalysis Today, 2019, 330, 157-170.	2.2	49
52	Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nature Communications, 2018, 9, 935.	5.8	182
53	CO2 methanation over Ni/Al hydrotalcite-derived catalyst: Experimental characterization and kinetic study. Fuel, 2018, 225, 230-242.	3.4	69
54	Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh. Solar Energy Materials and Solar Cells, 2018, 178, 98-105.	3.0	26

#	Article	IF	CITATIONS
55	Direct <i>versus</i> acetalization routes in the reaction network of catalytic HMF etherification. Catalysis Science and Technology, 2018, 8, 1304-1313.	2.1	33
56	Hydrotalcite based Ni–Fe/(Mg, Al)O _x catalysts for CO ₂ methanation – tailoring Fe content for improved CO dissociation, basicity, and particle size. Catalysis Science and Technology, 2018, 8, 1016-1027.	2.1	87
57	Enhanced Catalytic Activity of Ironâ€₽romoted Nickel on γâ€Al ₂ O ₃ Nanosheets for Carbon Dioxide Methanation. Energy Technology, 2018, 6, 1196-1207.	1.8	22
58	Hierarchically porous Pd/SiO2 catalyst by combination of miniemulsion polymerisation and sol-gel method for the direct synthesis of H2O2. Catalysis Today, 2018, 306, 16-22.	2.2	17
59	Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Applied Catalysis B: Environmental, 2018, 224, 136-145.	10.8	149
60	CO 2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships. Catalysis Today, 2018, 304, 181-189.	2.2	73
61	Development of photoanodes for photoelectrocatalytic solar cells based on copper-based nanoparticles on titania thin films of vertically aligned nanotubes. Catalysis Today, 2018, 304, 190-198.	2.2	11
62	Comparison of H + and NH 4 + forms of zeolites as acid catalysts for HMF etherification. Catalysis Today, 2018, 304, 97-102.	2.2	36
63	Engineering of silica-supported platinum catalysts with hierarchical porosity combining latex synthesis, sonochemistry and sol-gel process – II. Catalytic performance. Microporous and Mesoporous Materials, 2018, 256, 227-234.	2.2	11
64	Catalysis by hybrid sp ² /sp ³ nanodiamonds and their role in the design of advanced nanocarbon materials. Chemical Society Reviews, 2018, 47, 8438-8473.	18.7	130
65	Advanced Nanocarbon Materials for Future Energy Applications. , 2018, , 305-325.		7
66	Effect of the Solvent in Enhancing the Selectivity to Furan Derivatives in the Catalytic Hydrogenation of Furfural. ACS Sustainable Chemistry and Engineering, 2018, 6, 16235-16247.	3.2	50
67	Waste to Chemicals for a Circular Economy. Chemistry - A European Journal, 2018, 24, 11831-11839.	1.7	41
68	Frontispiece: Waste to Chemicals for a Circular Economy. Chemistry - A European Journal, 2018, 24, .	1.7	0
69	Hierarchical Porosity Tailoring of Sol–Gel Derived Pt/SiO2 Catalysts. Topics in Catalysis, 2018, 61, 1424-1436.	1.3	2
70	Photoactive materials based on semiconducting nanocarbons – A challenge opening new possibilities for photocatalysis. Journal of Energy Chemistry, 2017, 26, 207-218.	7.1	31
71	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie, 2017, 129, 2743-2747.	1.6	98
72	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 2699-2703.	7.2	516

#	Article	IF	CITATIONS
73	Looking at the Future of Chemical Production through the European Roadmap on Science and Technology of Catalysis the EU Effort for a Longâ€ŧerm Vision. ChemCatChem, 2017, 9, 904-909.	1.8	34
74	Effect of the Structure and Mesoporosity in Ni/Zeolite Catalysts for <i>n</i> â€Hexadecane Hydroisomerisation and Hydrocracking. ChemCatChem, 2017, 9, 1632-1640.	1.8	45
75	Mechanism of C–C bond formation in the electrocatalytic reduction of CO ₂ to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chemistry, 2017, 19, 2406-2415.	4.6	125
76	Engineering of photoanodes based on ordered TiO 2 -nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chemical Engineering Journal, 2017, 320, 352-362.	6.6	43
77	Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. Journal of Energy Chemistry, 2017, 26, 219-240.	7.1	48
78	Wasteâ€to hemicals for a Circular Economy: The Case of Urea Production (Wasteâ€toâ€Urea). ChemSusChem, 2017, 10, 912-920.	3.6	54
79	Enhanced formation of >C1 Products in Electroreduction of CO ₂ by Adding a CO ₂ Adsorption Component to a Gasâ€Diffusion Layerâ€Type Catalytic Electrode. ChemSusChem, 2017, 10, 4442-4446.	3.6	50
80	Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2. Journal of CO2 Utilization, 2017, 21, 534-542.	3.3	49
81	Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catalysis Science and Technology, 2017, 7, 5182-5194.	2.1	71
82	Room-Temperature Electrocatalytic Synthesis of NH ₃ from H ₂ O and N ₂ in a Gas–Liquid–Solid Three-Phase Reactor. ACS Sustainable Chemistry and Engineering, 2017, 5, 7393-7400.	3.2	158
83	Beyond Solar Fuels: Renewable Energyâ€Driven Chemistry. ChemSusChem, 2017, 10, 4409-4419.	3.6	79
84	Waste-to-methanol: Process and economics assessment. Bioresource Technology, 2017, 243, 611-619.	4.8	82
85	Analysis of the factors controlling performances of Au-modified TiO 2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells. Journal of Energy Chemistry, 2017, 26, 284-294.	7.1	28
86	Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. Journal of Energy Chemistry, 2017, 26, 302-308.	7.1	39
87	Reduction of Greenhouse Gas Emissions by Catalytic Processes. , 2017, , 2827-2880.		Ο
88	Catalyst Needs and Perspective for Integrating Biorefineries within the Refinery Value Chain. , 2017, , 375-396.		0
89	Carbon microspheres preparation, graphitization and surface functionalization for glycerol etherification. Catalysis Today, 2016, 277, 68-77.	2.2	27
90	Nanoscale Engineering in the Development of Photoelectrocatalytic Cells for Producing Solar Fuels. Topics in Catalysis, 2016, 59, 757-771.	1.3	24

#	Article	IF	CITATIONS
91	Influence of Zeolite Protective Overlayer on the Performances of Pd Thin Film Membrane on Tubular Asymmetric Alumina Supports. Industrial & Engineering Chemistry Research, 2016, 55, 4948-4959.	1.8	18
92	Pd Supported on Carbon Nitride Boosts the Direct Hydrogen Peroxide Synthesis. ACS Catalysis, 2016, 6, 6959-6966.	5.5	88
93	Selected papers from the 6th Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis, Amantea, Italy, from June 14th to 17th 2015. Catalysis Today, 2016, 277, 1.	2.2	0
94	A Comparative Catalyst Evaluation for the Selective Oxidative Esterification of Furfural. Topics in Catalysis, 2016, 59, 1659-1667.	1.3	20
95	Engineering of silica-supported platinum catalysts with hierarchical porosity combining latex synthesis, sonochemistry and sol-gel process – I. Material preparation. Microporous and Mesoporous Materials, 2016, 234, 207-214.	2.2	10
96	Synthesis, Characterization, and Activity Pattern of Ni–Al Hydrotalcite Catalysts in CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2016, 55, 8299-8308.	1.8	133
97	Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels. ChemSusChem, 2016, 9, 345-357.	3.6	53
98	On the nature of the active sites in the selective oxidative esterification of furfural on Au/ZrO 2 catalysts. Catalysis Today, 2016, 278, 56-65.	2.2	31
99	Role of size and pretreatment of Pd particles on their behaviour in the direct synthesis of H2O2. Journal of Energy Chemistry, 2016, 25, 297-305.	7.1	13
100	Functional nano-textured titania-coatings with self-cleaning and antireflective properties for photovoltaic surfaces. Solar Energy, 2016, 125, 227-242.	2.9	41
101	Disruptive catalysis by zeolites. Catalysis Science and Technology, 2016, 6, 2485-2501.	2.1	68
102	HMF etherification using NH ₄ -exchanged zeolites. New Journal of Chemistry, 2016, 40, 4300-4306.	1.4	18
103	Catalytic Performance of Î ³ -Al ₂ O ₃ –ZrO ₂ –TiO ₂ –CeO ₂ Composite Oxide Supported Ni-Based Catalysts for CO ₂ Methanation. Industrial & amp; Engineering Chemistry Research, 2016, 55, 4451-4460.	1.8	117
104	Advanced nanostructured titania photoactive materials for sustainable H2 production. Materials Science in Semiconductor Processing, 2016, 42, 115-121.	1.9	17
105	Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes. Catalysis Today, 2016, 259, 246-258.	2.2	70
106	Status of Research and Challenges in Converting Natural Gas. , 2015, , 3-49.		1
107	New Sustainable Model of Biorefineries: Biofactories and Challenges of Integrating Bio―and Solar Refineries. ChemSusChem, 2015, 8, 2854-2866.	3.6	49
108	Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering. ChemSusChem, 2015, 8, 3805-3814.	3.6	3

#	Article	IF	CITATIONS
109	Onionâ€Like Graphene Carbon Nanospheres as Stable Catalysts for Carbon Monoxide and Methane Chlorination. ChemCatChem, 2015, 7, 3036-3046.	1.8	19
110	Solar Production of Fuels from Water and CO ₂ : Perspectives and Opportunities for a Sustainable Use of Renewable Energy. Oil and Gas Science and Technology, 2015, 70, 799-815.	1.4	16
111	High-Throughput Screening of Heterogeneous Catalysts for the Conversion of Furfural to Bio-Based Fuel Components. Catalysts, 2015, 5, 2244-2257.	1.6	34
112	CO2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers. Journal of Applied Electrochemistry, 2015, 45, 701-713.	1.5	38
113	Energy-related catalysis. National Science Review, 2015, 2, 143-145.	4.6	11
114	Chemical Energy Conversion as Enabling Factor to Move to a Renewable Energy Economy. Green, 2015, 5, 43-54.	0.4	14
115	CO ₂ utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140177.	1.6	145
116	The role of oxide location in HMF etherification with ethanol over sulfated ZrO2 supported on SBA-15. Journal of Catalysis, 2015, 323, 19-32.	3.1	59
117	Use of modified anodization procedures to prepare advanced TiO2 nanostructured catalytic electrodes and thin film materials. Catalysis Today, 2015, 251, 121-131.	2.2	17
118	Monitoring of glucose in fermentation processes by using Au/TiO2 composites as novel modified electrodes. Journal of Applied Electrochemistry, 2015, 45, 943-951.	1.5	12
119	Electrocatalytic conversion of CO ₂ to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells. Faraday Discussions, 2015, 183, 125-145.	1.6	59
120	The role of acid sites induced by defects in the etherification of HMF on Silicalite-1 catalysts. Journal of Catalysis, 2015, 330, 558-568.	3.1	72
121	The energy-chemistry nexus: A vision of the future from sustainability perspective. Journal of Energy Chemistry, 2015, 24, 535-547.	7.1	52
122	Reduction of Greenhouse Gas Emissions by Catalytic Processes. , 2015, , 1-43.		0
123	Nanocarbons: Opening New Possibilities for Nano-engineered Novel Catalysts and Catalytic Electrodes. Catalysis Surveys From Asia, 2014, 18, 149-163.	1.0	30
124	Role of Feed Composition on the Performances of Pd-Based Catalysts for the Direct Synthesis of H2O2. Topics in Catalysis, 2014, 57, 1208-1217.	1.3	7
125	Advanced Oxidation Processes in Water Treatment. , 2014, , 251-290.		2
126	Trading Renewable Energy by using CO ₂ : An Effective Option to Mitigate Climate Change and Increase the use of Renewable Energy Sources. Energy Technology, 2014, 2, 453-461.	1.8	51

#	Article	IF	CITATIONS
127	16. Advanced photocatalytic materials by nanocarbon hybrid materials. , 2014, , 429-454.		5
128	A gas-phase reactor powered by solar energy and ethanol for H2 production. Applied Thermal Engineering, 2014, 70, 1270-1275.	3.0	26
129	Evolving scenarios for biorefineries and the impact on catalysis. Catalysis Today, 2014, 234, 2-12.	2.2	47
130	A New Scenario for Green & Sustainable Chemical Production. Journal of the Chinese Chemical Society, 2014, 61, 719-730.	0.8	21
131	Catalysis for biomass and CO ₂ use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. Chemical Society Reviews, 2014, 43, 7562-7580.	18.7	189
132	Dynamics of Palladium on Nanocarbon in the Direct Synthesis of H ₂ O ₂ . ChemSusChem, 2014, 7, 179-194.	3.6	78
133	CO ₂ Recycling: A Key Strategy to Introduce Green Energy in the Chemical Production Chain. ChemSusChem, 2014, 7, 1274-1282.	3.6	196
134	Carbon-based catalysts: Opening new scenario to develop next-generation nano-engineered catalytic materials. Chinese Journal of Catalysis, 2014, 35, 783-791.	6.9	40
135	Low-temperature graphitization of amorphous carbon nanospheres. Chinese Journal of Catalysis, 2014, 35, 869-876.	6.9	43
136	Catalytic Transformation of CO2 to Fuels and Chemicals, with Reference to Biorefineries. , 2013, , 529-555.		10
137	Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. Journal of Energy Chemistry, 2013, 22, 202-213.	7.1	102
138	Mixed-Metal Oxides. , 2013, , 153-184.		1
139	Photoelectrochemical properties of doped lanthanum orthoferrites. Electrochimica Acta, 2013, 109, 710-715.	2.6	43
140	Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels. Journal of Catalysis, 2013, 308, 237-249.	3.1	80
141	Carbon growth evidences as a result of benzene pyrolysis. Carbon, 2013, 59, 296-307.	5.4	30
142	Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy and Environmental Science, 2013, 6, 1711.	15.6	1,011
143	On the Nature of Selective Palladiumâ€Based Nanoparticles on Nitrogenâ€Doped Carbon Nanotubes for the Direct Synthesis of H ₂ O ₂ . ChemCatChem, 2013, 5, 1899-1905.	1.8	47
144	Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013, 113, 5782-5816.	23.0	1,163

#	Article	IF	CITATIONS
145	H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites. RSC Advances, 2013, 3, 21776.	1.7	70
146	Realizing Resource and Energy Efficiency in Chemical Industry by Using CO2. Green Energy and Technology, 2013, , 27-43.	0.4	1
147	Advances in Catalysts and Processes for Methanol Synthesis from CO2. Green Energy and Technology, 2013, , 147-169.	0.4	5
148	New Energy Sources and CO2 Treatment. Issues in Agroecology, 2013, , 143-160.	0.1	3
149	5.1 Photoelectrochemical CO ₂ Activation toward Artificial Leaves. , 2012, , 379-400.		2
150	The use of a solar photoelectrochemical reactor for sustainable production of energy. Theoretical Foundations of Chemical Engineering, 2012, 46, 651-657.	0.2	26
151	New Insights from Microcalorimetry on the FeOx/CNT-Based Electrocatalysts Active in the Conversion of CO2 to Fuels. ChemSusChem, 2012, 5, 577-586.	3.6	49
152	Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide. ChemSusChem, 2012, 5, 500-521.	3.6	203
153	Direct conversion of cellulose to glucose and valuable intermediates in mild reaction conditions over solid acid catalysts. Catalysis Today, 2012, 179, 178-184.	2.2	88
154	Deactivation mechanism of Pd supported on ordered and non-ordered mesoporous silica in the direct H2O2 synthesis using CO2-expanded methanol. Catalysis Today, 2012, 179, 170-177.	2.2	17
155	Reduction of Greenhouse Gas Emissions by Catalytic Processes. , 2012, , 1849-1890.		1
156	Introduction and General Overview. , 2012, , 1-28.		5
157	Anodically Formed TiO ₂ Thin Films: Evidence for a Multiparameter Dependent Photocurrent-Structure Relationship. Nanoscience and Nanotechnology Letters, 2012, 4, 142-148.	0.4	25
158	Nanostructured Electrodes and Devices for Converting Carbon Dioxide Back to Fuels: Advances and Perspectives. Green Energy and Technology, 2011, , 561-583.	0.4	7
159	Synthesis, Characterization and Sensing Applications of Nanotubular TiO2-Based Materials. Lecture Notes in Electrical Engineering, 2011, , 151-154.	0.3	1
160	Synthesis and performance of platinum supported on ordered mesoporous carbons as catalyst for PEM fuel cells: Effect of the surface chemistry of the support. International Journal of Hydrogen Energy, 2011, 36, 9805-9814.	3.8	66
161	Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catalysis Today, 2011, 175, 435-441.	2.2	170

162 CO₂â€based energy vectors for the storage of solar energy. , 2011, 1, 21-35.

118

#	Article	IF	CITATIONS
163	Performances of Pd Nanoparticles on Different Supports in the Direct Synthesis of H2O2 in CO2-Expanded Methanol. Topics in Catalysis, 2011, 54, 718-728.	1.3	14
164	Creating and mastering nano-objects to design advanced catalytic materials. Coordination Chemistry Reviews, 2011, 255, 1480-1498.	9.5	85
165	Carbon Nanotubes for Sustainable Energy Applications. ChemSusChem, 2011, 4, 913-925.	3.6	86
166	Can We Afford to Waste Carbon Dioxide? Carbon Dioxide as a Valuable Source of Carbon for the Production of Light Olefins. ChemSusChem, 2011, 4, 1265-1273.	3.6	107
167	Carbon Dioxide Recycling: Emerging Largeâ€Scale Technologies with Industrial Potential. ChemSusChem, 2011, 4, 1194-1215.	3.6	520
168	SBA-15 as a support for palladium in the direct synthesis of H2O2 from H2 and O2. Catalysis Today, 2011, 169, 167-174.	2.2	20
169	Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catalysis Today, 2011, 167, 14-30.	2.2	107
170	The influence of the nanostructure on the effect of CO2 on the properties of Pd–Ag thin-film for H2 separation. Applied Catalysis A: General, 2011, 391, 158-168.	2.2	6
171	Towards Solar Fuels from Water and CO ₂ . ChemSusChem, 2010, 3, 195-208.	3.6	271
172	Pd–Ag thin film membrane for H2 separation. Part 2. Carbon and oxygen diffusion in the presence of CO/CO2 in the feed and effect on the H2 permeability. International Journal of Hydrogen Energy, 2010, 35, 5400-5409.	3.8	21
173	Problems and perspectives in nanostructured carbon-based electrodes for clean and sustainable energy. Catalysis Today, 2010, 150, 151-162.	2.2	88
174	Pd nanoparticles supported on N-doped nanocarbon for the direct synthesis of H2O2 from H2 and O2. Catalysis Today, 2010, 157, 280-285.	2.2	87
175	Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy and Environmental Science, 2010, 3, 292.	15.6	159
176	Catalytic Wastewater Treatment Using Pillared Clays. , 2010, , 167-200.		5
177	The Role of Nanostructure in Improving the Performance of Electrodes for Energy Storage and Conversion. European Journal of Inorganic Chemistry, 2009, 2009, 3851-3878.	1.0	142
178	Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. Journal of Power Sources, 2009, 192, 144-150.	4.0	67
179	Catalysis: Role and Challenges for a Sustainable Energy. Topics in Catalysis, 2009, 52, 948-961.	1.3	103
180	Performances and stability of a Pd-based supported thin film membrane prepared by EPD with a novel seeding procedure. Part 1—Behaviour in H2:N2 mixturesâ~†. Catalysis Today, 2009, 145, 63-71.	2.2	23

#	Article	IF	CITATIONS
181	One-step H2O2 and phenol syntheses: Examples of challenges for new sustainable selective oxidation processesâ~†. Catalysis Today, 2009, 143, 145-150.	2.2	71
182	Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates. Catalysis Today, 2009, 143, 57-63.	2.2	107
183	Title is missing!. Catalysis Today, 2009, 141, 243-244.	2.2	Ο
184	Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 2009, 148, 191-205.	2.2	1,224
185	The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell. Catalysis Today, 2009, 147, 287-299.	2.2	43
186	Use of Pt/CexZr1-xAl2O3 as Advanced Catalyst for Hydrogen Peroxide Thrusters. , 2009, , .		2
187	Synthesis of TiO2 Thin Films: Relationship Between Preparation Conditions and Nanostructure. Topics in Catalysis, 2008, 50, 133-144.	1.3	32
188	Catalysis, a driver for sustainability and societal challenges. Catalysis Today, 2008, 138, 69-76.	2.2	29
189	Catalysis by layered materials: A review. Microporous and Mesoporous Materials, 2008, 107, 3-15.	2.2	348
190	Copper-pillared clays (Cu-PILC) for agro-food wastewater purification with H2O2. Microporous and Mesoporous Materials, 2008, 107, 46-57.	2.2	47
191	Oxidation intermediates and reaction pathways of wet hydrogen peroxide oxidation of p-coumaric acid over (Al-Fe)PILC catalyst. Studies in Surface Science and Catalysis, 2008, , 1063-1068.	1.5	3
192	Nature of corona in TiO2@SBA15-like mesoporous nanocomposite. Studies in Surface Science and Catalysis, 2007, 170, 1788-1795.	1.5	6
193	Activity and stability of (Al-Fe) pillared montmorillonite catalysts for wet hydrogen peroxide oxidation of p-coumaric acid. Studies in Surface Science and Catalysis, 2007, 170, 1425-1431.	1.5	6
194	Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chemistry, 2007, 9, 671.	4.6	186
195	Chapter 1 Introduction: State of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2. Studies in Surface Science and Catalysis, 2007, , 1-23.	1.5	20
196	Oxide thin films based on ordered arrays of 1D nanostructure. A possible approach toward bridging material gap in catalysis. Physical Chemistry Chemical Physics, 2007, 9, 4930.	1.3	42
197	Cu-MOF: a new highly active catalyst for WHPCO of waste water from agro-food production. Studies in Surface Science and Catalysis, 2007, 170, 2054-2059.	1.5	3
198	Environmental Catalysis: A Push to the Development of New Catalytic Materials. Studies in Surface Science and Catalysis, 2007, 172, 79-84.	1.5	2

#	Article	IF	CITATIONS
199	Photoactive titania nanostructured thin films: Synthesis and characteristics of ordered helical nanocoil array. Catalysis Today, 2007, 122, 3-13.	2.2	45
200	Wet hydrogen peroxide catalytic oxidation of olive oil mill wastewaters using Cu-zeolite and Cu-pillared clay catalysts. Catalysis Today, 2007, 124, 240-246.	2.2	46
201	Behaviour of SOx-traps derived from ternary Cu/Mg/Al hydrotalcite materials. Catalysis Today, 2007, 127, 219-229.	2.2	21
202	Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion. Kinetics and Catalysis, 2007, 48, 877-883.	0.3	50
203	Performances of SOx traps derived from Cu/Al hydrotalcite for the protection of NOx traps from the deactivation by sulphur. Applied Catalysis B: Environmental, 2007, 70, 172-178.	10.8	28
204	Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production. Applied Catalysis B: Environmental, 2007, 70, 437-446.	10.8	103
205	Synthesis and characterization of Co-containing SBA-15 catalysts. Journal of Porous Materials, 2007, 14, 305-313.	1.3	18
206	Use of solid catalysts in promoting water treatment and remediation technologies. Catalysis, 2007, , 46-71.	0.6	8
207	Performances, characteristics and stability of catalytic membranes based on a thin Pd film on a ceramic support for H2O2 direct synthesis. Desalination, 2006, 200, 760-761.	4.0	7
208	Characterization and reactivity of Fe-[Al,B]MFI catalysts for benzene hydroxylation with N2O. Applied Catalysis A: General, 2006, 307, 30-41.	2.2	48
209	Performances of Pd-Me (Me=Ag, Pt) catalysts in the direct synthesis of H2O2 on catalytic membranes. Catalysis Today, 2006, 117, 193-198.	2.2	52
210	Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Microporous and Mesoporous Materials, 2006, 90, 347-361.	2.2	103
211	Synthesis and performances of carbon-supported noble metal nanoclusters as electrodes for polymer electrolyte membrane fuel cells. Inorganica Chimica Acta, 2006, 359, 4828-4832.	1.2	20
212	The issue of selectivity in the direct synthesis of H2O2 from H2 and O2: the role of the catalyst in relation to the kinetics of reaction. Topics in Catalysis, 2006, 38, 181-193.	1.3	32
213	Homogeneous versus heterogeneous catalytic reactions to eliminate organics from waste water using H2O2. Topics in Catalysis, 2006, 40, 207-219.	1.3	103
214	Dynamics of SO2 adsorption–oxidation in SOx traps for the protection of NOx adsorbers in diesel engine emissions. Catalysis Today, 2006, 112, 174-179.	2.2	11
215	Enhanced stability of catalytic membranes based on a porous thin Pd film on a ceramic support by forming a Pd–Ag interlayer. Catalysis Today, 2006, 118, 189-197.	2.2	22
216	Direct synthesis of H2O2 on monometallic and bimetallic catalytic membranes using methanol as reaction medium. Journal of Catalysis, 2006, 237, 213-219.	3.1	83

#	Article	IF	CITATIONS
217	Synthesis of Fe-zeolites and Fe-PILC samples and their activity in wet hydrogen peroxide oxidation of p-coumaric acid. Studies in Surface Science and Catalysis, 2005, , 2009-2016.	1.5	0
218	Performances of Co-based catalysts for the selective side chain oxidation of toluene in the gas phase. Catalysis Today, 2005, 99, 161-170.	2.2	9
219	Electrocatalytic performances of nanostructured platinum–carbon materials. Catalysis Today, 2005, 102-103, 50-57.	2.2	59
220	Palladium-modified catalytic membranes for the direct synthesis of HO: preparation and performance in aqueous solution. Journal of Catalysis, 2005, 235, 241-248.	3.1	54
221	Preparation, performances and reaction mechanism for the synthesis of H2O2 from H2 and O2 based on palladium membranes. Catalysis Today, 2005, 104, 323-328.	2.2	82
222	Performances of Fe-[Al, B]MFI catalysts in benzene hydroxylation with N2O. Catalysis Today, 2005, 110, 211-220.	2.2	42
223	Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Topics in Catalysis, 2005, 33, 207-224.	1.3	143
224	Active and spectator iron species in Fe/MFI catalysts for benzene selective hydroxylation with N2O. Studies in Surface Science and Catalysis, 2004, 154, 2566-2573.	1.5	10
225	Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N2O. Catalysis Today, 2004, 91-92, 17-26.	2.2	39
226	Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N2O. Catalysis Today, 2004, 91-92, 17-17.	2.2	0
227	Heterogeneous Catalytic Reactions with CO2: Status and Perspectives. Studies in Surface Science and Catalysis, 2004, 153, 1-8.	1.5	64
228	Integrated Design for Solid Catalysts in Multiphase Reactions. Cattech, 2003, 7, 78-89.	2.6	24
229	Title is missing!. Topics in Catalysis, 2003, 23, 125-136.	1.3	38
230	Remediation of water contamination using catalytic technologies. Applied Catalysis B: Environmental, 2003, 41, 15-29.	10.8	96
231	Reduction of greenhouse gas emissions by catalytic processes. Applied Catalysis B: Environmental, 2003, 41, 143-155.	10.8	60
232	Nanostructured catalysts for NO x storage–reduction and N 2 O decomposition. Journal of Catalysis, 2003, 216, 443-454.	3.1	77
233	Integrated Design for Solid Catalysts in Multiphase Reactions. ChemInform, 2003, 34, no.	0.1	0
234	Catalysis and sustainable (green) chemistry. Catalysis Today, 2003, 77, 287-297.	2.2	171

#	Article	IF	CITATIONS
235	Novel catalyst design for multiphase reactions. Catalysis Today, 2003, 79-80, 3-13.	2.2	43
236	Isomorphously substituted Fe-ZSM-5 zeolites as catalysts Causes of catalyst ageing as revealed by X-band EPR, Mössbauer and 29Si MAS NMR spectra. Applied Catalysis A: General, 2003, 252, 75-90.	2.2	41
237	Tubular Inorganic catalytic membrane reactors: advantages and performance in multiphase hydrogenation reactions. Catalysis Today, 2003, 79-80, 139-149.	2.2	54
238	58 Gas-phase electrocatalytic conversion of CO2 to fuels over gas diffusion membranes containing Pt or Pd nanoclusters. Studies in Surface Science and Catalysis, 2003, 145, 283-286.	1.5	10
239	One-step benzene oxidation to phenol. Part I: Preparation and characterization of Fe-(Al)MFI type catalysts. Studies in Surface Science and Catalysis, 2002, 142, 477-484.	1.5	7
240	One step benzene oxidation to phenol. Part II: Catalytic behavior of Fe-(Al)MFI zeolites. Studies in Surface Science and Catalysis, 2002, , 503-510.	1.5	7
241	Environmental catalysis: trends and outlook. Catalysis Today, 2002, 75, 3-15.	2.2	188
242	Catalytic conversion of MTBE to biodegradable chemicals in contaminated water. Catalysis Today, 2002, 75, 69-76.	2.2	23
243	Outlooks for environmental catalysis. Catalysis Today, 2002, 75, 1-2.	2.2	4
244	Reaction Mechanism and Control of Selectivity in Catalysis by Oxides: Some Challenges and Open Questions. International Journal of Molecular Sciences, 2001, 2, 183-196.	1.8	11
245	Site isolation in iron-molybdate-based catalysts for side chain oxidation of alkylaromatics. Topics in Catalysis, 2001, 15, 145-152.	1.3	10
246	Catalysis Using Guest Single and Mixed Oxides in Host Zeolite Matrices. , 2001, , 165-186.		2
247	The role of oxygen vacancies in zirconia on the dispersion, stabilisation and reactivity in the presence of O2 of supported Rh particles. Studies in Surface Science and Catalysis, 2000, , 2273-2278.	1.5	5
248	In situ DRIFT study of the reactivity and reaction mechanism of catalysts based on iron–molybdenum oxides encapsulated in Boralite for the selective oxidation of alkylaromatics. Catalysis Today, 2000, 61, 211-221.	2.2	38
249	Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes. Catalysis Today, 2000, 55, 139-149.	2.2	136
250	In situ activation phenomena of Rh supported on zirconia samples for the catalytic decomposition of N2O. Applied Catalysis A: General, 2000, 194-195, 79-88.	2.2	38
251	Rinse water purification using solid regenerable catalytic adsorbents. Catalysis Today, 2000, 55, 51-60.	2.2	13
252	Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catalysis Today, 2000, 55, 61-69.	2.2	287

#	Article	IF	CITATIONS
253	Title is missing!. Catalysis Letters, 2000, 67, 107-112.	1.4	9
254	Oscillating Behavior in N2O Decomposition over Rh Supported on Zirconia-Based Catalysts: The Role of the Reaction Conditions. Journal of Catalysis, 2000, 192, 224-235.	3.1	39
255	Oscillating Behavior in N2O Decomposition over Rh Supported on Zirconia-Based Catalysts. Journal of Catalysis, 2000, 194, 130-139.	3.1	22
256	Title is missing!. Topics in Catalysis, 2000, 11/12, 195-204.	1.3	6
257	Novel catalysts and catalytic technologies for N2O removal from industrial emissions containing O2, H2O and SO2. Journal of Environmental Management, 2000, 4, 325-338.	1.7	91
258	Removal of N2O from Industrial Gaseous Streams by Selective Adsorption over Metal-Exchanged Zeolites. Industrial & Engineering Chemistry Research, 2000, 39, 131-137.	1.8	57
259	Efficient Simultaneous Dry Removal of SO ₂ and NO _x from Flue Gas over Copperâ€Based Catalytic Materials. Asia-Pacific Journal of Chemical Engineering, 2000, 8, 441-463.	0.0	6
260	Oxidation catalysts: New trends. Current Opinion in Solid State and Materials Science, 1999, 4, 74-79.	5.6	22
261	Role of Surface Hydration State on the Nature and Reactivity of Copper Ions in Cu-ZrO2Catalysts: N2O Decomposition. Journal of Catalysis, 1998, 179, 111-128.	3.1	58
262	Modification of the surface reactivity and selectivity of mixed oxides in oxidation reactions due to coadsorbate species. Catalysis Today, 1998, 41, 457-469.	2.2	22
263	The Role of Ammonia Adspecies on the Pathways of Catalytic Transformation at Mixed Metal Oxide Surfaces. Catalysis Reviews - Science and Engineering, 1998, 40, 175-208.	5.7	32
264	Acetonitrile by Catalytic Ammoxidation of Ethane and Propane: A New Reaction of Alkane Functionalization. Studies in Surface Science and Catalysis, 1998, , 569-574.	1.5	1
265	Surface chemistry of V–Sb–oxide in relation to the mechanism of acrylonitrile synthesis from propane Part 3.—Influence of ammonia on the competitive pathways of reaction. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1147-1158.	1.7	14
266	Structure, activity and selectivity relationships in propane ammoxidation to acrylonitrile on V–Sb oxides Part 3Modifications during the catalytic reaction and effect of feed composition. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3391-3402.	1.7	9
267	Role of the Size and Texture Properties of Copper-on-Alumina Pellets during the Simultaneous Removal of SO2 and NOx from Flue Gas. Industrial & Engineering Chemistry Research, 1997, 36, 2945-2953.	1.8	21
268	Catalysts based on pillared interlayered clays for the selective catalytic reduction of NO. Clay Minerals, 1997, 32, 123-134.	0.2	29
269	Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity. Catalysis Today, 1997, 35, 113-120.	2.2	127
270	Effect of ammonia chemisorption on the surface reactivity of V-Sb-oxide catalysts for propane ammoxidation. Applied Catalysis A: General, 1997, 149, 225-244.	2.2	50

#	Article	IF	CITATIONS
271	Vî—,Sb-oxide catalysts for the ammoxidation of propane. Applied Catalysis A: General, 1997, 157, 143-172.	2.2	116
272	Dependence of the catalytic behavior of V—Sb-oxides in propane ammoxidation to acrylonitrile from the method of preparation. Applied Catalysis A: General, 1997, 165, 273-290.	2.2	42
273	Gel-Supported Precipitation. , 1996, , 63-89.		6
274	Reaction pathways of propane and propene conversion in the presence of NO and O2 on Cu/MFI. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5129.	1.7	40
275	Surface chemistry of V–Sb–oxide in relation to the mechanism of acrylonitrile synthesis from propane. Part 2.—Reactivity towards ammonia and relationship with catalytic behaviour. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5151-5159.	1.7	12
276	Surface chemistry of V–Sb–oxide in relation to the mechanism of acrylonitrile synthesis from propane. Part 1.—Chemisorption and transformation of possible intermediates. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5141-5149.	1.7	14
277	Modification of the surface reactivity of Cu-MFI during chemisorption and transformation of the reagents in the selective reduction of NO with propane and O2. Applied Catalysis B: Environmental, 1996, 7, 359-377.	10.8	10
278	Catalytic behavior and nature of active sites in copper-on-zirconia catalysts for the decomposition of N2O. Catalysis Today, 1996, 27, 265-270.	2.2	58
279	Role and importance of oxidized nitrogen oxide adspecies on the mechanism and dynamics of reaction over copper-based catalysts. Catalysis Today, 1996, 29, 117-122.	2.2	27
280	Role of the preparation and nature of zeolite on the activity of Cu-exchanged MFI for no conversion by hydrocarbons and oxygen. Studies in Surface Science and Catalysis, 1995, , 150-152.	1.5	0
281	Modification of the surface reactivity of vanadium antimonate catalysts during catalytic propane ammoxidation. Applied Catalysis A: General, 1995, 124, 317-337.	2.2	61
282	Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides. Applied Catalysis A: General, 1995, 132, 179-259.	2.2	409
283	Adsorption and Reactivity of No on Copper-on-Alumina Catalysts. Journal of Catalysis, 1995, 152, 75-92.	3.1	161
284	Adsorption and Reactivity of No on Copper-on-Alumina Catalysts. Journal of Catalysis, 1995, 152, 93-102.	3.1	46
285	Influence of preparation method on the properties of V-Sb-O catalysts for the ammoxidation of propane. Studies in Surface Science and Catalysis, 1995, , 59-74.	1.5	7
286	Development of copper-on-alumina catalytic materials for the cleanup of flue gas and the disposal of diluted ammonium sulfate solutions. Journal of Materials Research, 1995, 10, 553-561.	1.2	24
287	Specific activity of copper species in decomposition of NO on Cu-ZSM-5. Reaction Kinetics and Catalysis Letters, 1994, 53, 79-85.	0.6	11
288	High activity of copper-boralite in the reduction of nitric oxide with propane / oxygen. Applied Catalysis B: Environmental, 1994, 4, L275-L281.	10.8	18

#	Article	IF	CITATIONS
289	Deactivation Effects in the Synthesis of Methyl Ethyl Ketone by Selective Oxidation over Solid Wacker-type Catalysts. Studies in Surface Science and Catalysis, 1994, 88, 393-400.	1.5	9
290	Acrylonitrile from Propane on (VO)2P2O7 with Preadsorbed Ammonia. Journal of Catalysis, 1993, 142, 84-96.	3.1	31
291	Overview of the reactivity of copper-on-alumina for the oxidation and sorption of SO2 with simultaneous reduction of NO by NH3 and effect of the modification with a V/TiO 2 component. Catalysis Today, 1993, 17, 103-110.	2.2	21
292	Role of the support and of adsorbed species on the behavior of Cu-based catalysts for No conversion. Catalysis Today, 1993, 17, 159-166.	2.2	53
293	Selective Catalytic Reduction of no on Copper-On-Alumina in the Cleanup of High Sulfur Content Flue Gas: Catalyst Development and Design. Studies in Surface Science and Catalysis, 1993, 75, 2677-2680.	1.5	3
294	Nature of Vanadium Species in Vanadium-Containing Silicalite and Their Behavior in Oxidative Dehydrogenation of Propane. ACS Symposium Series, 1993, , 281-297.	0.5	17
295	Physicochemical characterization of V-silicalite. The Journal of Physical Chemistry, 1992, 96, 2617-2629.	2.9	351
296	Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst. 2. Kinetics of the DeSOx reaction. Industrial & Engineering Chemistry Research, 1992, 31, 1956-1963.	1.8	40
297	Assessment of copper-vanadium oxide on mixed alumina-titania supports as sulphur dioxide sorbents and as catalysts for the selective catalytic reduction of NOx by ammonia. Applied Catalysis B: Environmental, 1992, 1, 129-137.	10.8	25
298	Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst. 1. Mechanism of sulfur dioxide oxidation-adsorption. Industrial & amp; Engineering Chemistry Research, 1992, 31, 1947-1955.	1.8	100
299	Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst. 3. DeNOx behavior as a function of the surface coverage with sulfate species. Industrial & Engineering Chemistry Research, 1992, 31, 1963-1970.	1.8	33
300	Role of the nature of copper sites in the activity of copper-based catalysts for no conversion. Research on Chemical Intermediates, 1992, 17, 125-135.	1.3	30
301	Shielding effect of aluminium on sulphur dioxide deactivation of vanadium oxide on titania-alumina DeNOx catalysts. Journal of the Chemical Society Chemical Communications, 1991, , 88.	2.0	7
302	Nature and mechanism of formation of sulfate species on copper/alumina sorbent-catalysts for sulfur dioxide removal. The Journal of Physical Chemistry, 1991, 95, 4051-4058.	2.9	121
303	In-Situ Control of Vanadyl Pyrophosphate Deactivation by Addition of So2 During C4–C5 Alkane Oxidation. Studies in Surface Science and Catalysis, 1991, , 449-456.	1.5	5
304	Surface structure and reactivity of V-oxide species at the catalyst-support interface. Research on Chemical Intermediates, 1991, 15, 49-66.	1.3	19
305	ANTENNA EFFECT IN LUMINESCENT LANTHANIDE CRYPTATES: A PHOTOPHYSICAL STUDY. Photochemistry and Photobiology, 1990, 52, 299-306.	1.3	248
306	[Eu âŠ, bpy·bpy·bpy]+ cryptate: Luminescence and conformation. Chemical Physics Letters, 1988, 146, 347-35	1.1.2	49

#	Article	IF	CITATIONS
307	Electron- and energy-transfer processes involving excited states of lanthanide complexes: evidence for inner-sphere and outer-sphere mechanisms. Inorganic Chemistry, 1988, 27, 1628-1633.	1.9	24
308	Luminescence processes in [Tb.cntnd.bpy.bpy.bpy]3+ cryptate: a low-temperature solid-state study. The Journal of Physical Chemistry, 1988, 92, 2419-2422.	2.9	62
309	Influence of fluoride ions on the absorption and luminescence properties of the [Eu.cntnd.2.2.1]3+ and [Tb.cntnd.2.2.1]3+ cryptates. The Journal of Physical Chemistry, 1987, 91, 6136-6139.	2.9	47
310	Luminescence Probes: The Eu3⊕ and Tb3⊕-Cryptates of Polypyridine Macrobicyclic Ligands. Angewandte Chemie International Edition in English, 1987, 26, 1266-1267.	4.4	143
311	Photophysics of Ce3+ cryptates. Inorganica Chimica Acta, 1987, 133, 167-173.	1.2	56
312	Electron and energy transfer processes of excited states of europium(III) and terbium(III) aquo ions and cryptates. Journal of the Less Common Metals, 1986, 126, 329-334.	0.9	8
313	Nano-architecture and reactivity of Titania catalytic materials. <i>Quasi</i> -1D nanostructures. Catalysis, 0, , 367-402.	0.6	8
314	Basell Spherizone Technology. , 0, , 563-578.		3
315	Membrane Technologies at the Service of Sustainable Development through Process Intensification. , 0, , 257-278.		2
316	Friedel-Crafts Acylation of Aromatic Ethers Using Zeolites. , 0, , 529-540.		0