Jose Luis Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827374/publications.pdf

Version: 2024-02-01

238 papers

23,864 citations

72 h-index 146

g-index

265 all docs

265 docs citations

265 times ranked 22332 citing authors

#	Article	IF	CITATIONS
1	Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 2015, 13, 310-317.	13.6	1,612
2	Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 2008, 19, 260-265.	3.3	1,608
3	Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science, 2008, 321, 365-367.	6.0	1,409
4	Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 2009, 157, 2893-2902.	3.7	1,409
5	Natural Antibiotic Resistance and Contamination by Antibiotic Resistance Determinants: The Two Ages in the Evolution of Resistance to Antimicrobials. Frontiers in Microbiology, 2012, 3, 1.	1.5	936
6	What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 2015, 13, 116-123.	13.6	698
7	Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 2019, 4, 1432-1442.	5.9	614
8	Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19484-19489.	3.3	594
9	Mutation Frequencies and Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44, 1771-1777.	1.4	530
10	Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms, 2016, 4, 14.	1.6	486
11	Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance. Clinical Microbiology Reviews, 2002, 15, 647-679.	5.7	416
12	The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2521-2530.	1.2	387
13	Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiology Reviews, 2009, 33, 430-449.	3.9	384
14	Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 2019, 5, eaau9124.	4.7	346
15	Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environment International, 2020, 140, 105733.	4.8	338
16	Environmental selection of antibiotic resistance genes. Minireview. Environmental Microbiology, 2001, 3, 1-9.	1.8	331
17	Predicting antibiotic resistance. Nature Reviews Microbiology, 2007, 5, 958-965.	13.6	305
18	Antibiotics as signals that trigger specific bacterial responses. Current Opinion in Microbiology, 2008, 11, 161-167.	2.3	295

#	Article	IF	Citations
19	A global view of antibiotic resistance. FEMS Microbiology Reviews, 2009, 33, 44-65.	3.9	271
20	The Neglected Intrinsic Resistome of Bacterial Pathogens. PLoS ONE, 2008, 3, e1619.	1.1	257
21	Chronic <i>Pseudomonas aeruginosa</i> Infection in Chronic Obstructive Pulmonary Disease. Clinical Infectious Diseases, 2008, 47, 1526-1533.	2.9	235
22	Metabolic regulation of antibiotic resistance. FEMS Microbiology Reviews, 2011, 35, 768-789.	3.9	220
23	Macrolide Resistance Genes in Enterococcus spp. Antimicrobial Agents and Chemotherapy, 2000, 44, 967-971.	1.4	195
24	Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environmental Microbiology, 1999, 1, 421-430.	1.8	194
25	Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Frontiers in Microbiology, 2016, 7, 1483.	1.5	180
26	Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2000, 44, 3079-3086.	1.4	179
27	RND multidrug efflux pumps: what are they good for?. Frontiers in Microbiology, 2013, 4, 7.	1.5	175
28	Fitness of in vitro selected Pseudomonas aeruginosanalB and nfxB multidrug resistant mutants. Journal of Antimicrobial Chemotherapy, 2002, 50, 657-664.	1.3	164
29	General principles of antibiotic resistance in bacteria. Drug Discovery Today: Technologies, 2014, 11, 33-39.	4.0	157
30	Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 1997, 41, 1140-1142.	1.4	152
31	Overexpression of the Multidrug Efflux Pumps MexCD-OprJ and MexEF-OprN Is Associated with a Reduction of Type III Secretion in Pseudomonas aeruginosa. Journal of Bacteriology, 2005, 187, 1384-1391.	1.0	151
32	Genetic Determinants Involved in the Susceptibility of <i>Pseudomonas aeruginosa</i> to \hat{l}^2 -Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 4159-4167.	1.4	149
33	Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resistance Updates, 2016, 28, 13-27.	6.5	139
34	The intrinsic resistome of bacterial pathogens. Frontiers in Microbiology, 2013, 4, 103.	1.5	137
35	Characterization of the Polymyxin B Resistome of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2013, 57, 110-119.	1.4	136
36	Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are Uncommon in Natural Isolates of Clinically-Relevant Microorganisms. PLoS ONE, 2014, 9, e86669.	1.1	135

#	Article	IF	CITATIONS
37	Phenotypic Resistance to Antibiotics. Antibiotics, 2013, 2, 237-255.	1.5	134
38	The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2010, 12, 3196-3212.	1.8	133
39	Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nature Communications, 2020, 11, 1427.	5.8	133
40	Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 2019, 4, 112-123.	5.9	129
41	Man-made microbial resistances in built environments. Nature Communications, 2019, 10, 968.	5.8	128
42	Stenotrophomonas maltophilia D457R Contains a Cluster of Genes from Gram-Positive Bacteria Involved in Antibiotic and Heavy Metal Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44, 1778-1782.	1.4	126
43	Ecology and evolution of antibiotic resistance. Environmental Microbiology Reports, 2009, 1, 469-476.	1.0	123
44	Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 2014, 119, 68-77.	0.4	120
45	In-depth resistome analysis by targeted metagenomics. Microbiome, 2018, 6, 11.	4.9	115
46	The Pseudomonas putida Crc Global Regulator Controls the Expression of Genes from Several Chromosomal Catabolic Pathways for Aromatic Compounds. Journal of Bacteriology, 2004, 186, 1337-1344.	1.0	114
47	Quinolone Resistance: Much More than Predicted. Frontiers in Microbiology, 2011, 2, 22.	1.5	113
48	The Biocide Triclosan Selects Stenotrophomonas maltophilia Mutants That Overproduce the SmeDEF Multidrug Efflux Pump. Antimicrobial Agents and Chemotherapy, 2005, 49, 781-782.	1.4	108
49	Expression of Multidrug Efflux Pump SmeDEF by Clinical Isolates of Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2001, 45, 1879-1881.	1.4	105
50	Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiology, 2008, 8, 148.	1.3	104
51	Factors determining resistance to \hat{l}^2 -lactam combined with \hat{l}^2 -lactamase inhibitors in Escherichia coli. Journal of Antimicrobial Chemotherapy, 1991, 27, 569-575.	1.3	102
52	Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiology Letters, 1990, 75, 45-56.	0.7	100
53	Overproduction of the multidrug efflux pump MexEFâ€OprN does not impair <i>Pseudomonas aeruginosa</i> fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environmental Microbiology, 2012, 14, 1968-1981.	1.8	100
54	<i>Stenotrophomonas maltophilia</i> drug resistance. Future Microbiology, 2009, 4, 655-660.	1.0	98

#	Article	IF	Citations
55	Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of <i>Escherichia hermannii</i> and <i>Enterobacter cloacae</i> Applied and Environmental Microbiology, 1998, 64, 4317-4320.	1.4	97
56	Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology (United Kingdom), 1999, 145, 2857-2862.	0.7	96
57	Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex?. Frontiers in Microbiology, 2015, 6, 241.	1.5	95
58	The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia. PLoS Pathogens, 2011, 7, e1002103.	2.1	94
59	Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. Journal of Antimicrobial Chemotherapy, 2004, 53, 432-434.	1.3	93
60	The intrinsic resistome of <i>Pseudomonas aeruginosa </i> to β-lactams. Virulence, 2011, 2, 144-146.	1.8	93
61	Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environment International, 2018, 118, 179-188.	4.8	93
62	A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. International Journal of Antimicrobial Agents, 2012, 40, 210-220.	1.1	92
63	Biological Cost of AmpC Production for Salmonella enterica Serotype Typhimurium. Antimicrobial Agents and Chemotherapy, 2000, 44, 3137-3143.	1.4	90
64	Cloning and Characterization of SmeT, a Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF. Antimicrobial Agents and Chemotherapy, 2002, 46, 3386-3393.	1.4	89
65	Structure of Pseudomonas aeruginosa Populations Analyzed by Single Nucleotide Polymorphism and Pulsed-Field Gel Electrophoresis Genotyping. Journal of Bacteriology, 2004, 186, 4228-4237.	1.0	84
66	The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiology Spectrum, 2015, 3, PLAS-0039-2014.	1.2	83
67	Mutation-Driven Evolution of Pseudomonas aeruginosa in the Presence of either Ceftazidime or Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	83
68	Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiology Letters, 1990, 75, 45-56.	0.7	81
69	Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Current Opinion in Pharmacology, 2011, 11, 439-445.	1.7	80
70	Aerobactin production as a virulence factor: A reevaluation. European Journal of Clinical Microbiology and Infectious Diseases, 1988, 7, 621-629.	1.3	78
71	The Organization of Intercistronic Regions of the Aerobactin Operon of pCoIV-K30 may Account for the Differential Expression of the iucABCD iutA Genes. Journal of Molecular Biology, 1994, 238, 288-293.	2.0	77
72	RESISTANCE TO BETA-LACTAM/CLAVULANATE. Lancet, The, 1987, 330, 1473.	6.3	75

#	Article	IF	CITATIONS
73	SmQnr Contributes to Intrinsic Resistance to Quinolones in <i>Stenotrophomonas maltophilia</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 580-581.	1.4	7 5
74	A Function of SmeDEF, the Major Quinolone Resistance Determinant of Stenotrophomonas maltophilia, Is the Colonization of Plant Roots. Applied and Environmental Microbiology, 2014, 80, 4559-4565.	1.4	75
75	Effect of antibiotics on bacterial populations: a multi-hierarchical selection process. F1000Research, 2017, 6, 51.	0.8	75
76	Polymorphic Mutation Frequencies in Escherichia coli: Emergence of Weak Mutators in Clinical Isolates. Journal of Bacteriology, 2004, 186, 5538-5542.	1.0	74
77	Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens. Frontiers in Microbiology, 2011, 2, 265.	1.5	74
78	Mechanisms of antimicrobial resistance in <i>Stenotrophomonas maltophilia</i> knowledge. Expert Review of Anti-Infective Therapy, 2020, 18, 335-347.	2.0	73
79	Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clinical Microbiology Reviews, 2021, 34, e0005019.	5.7	71
80	Quinolone resistance by mutations in chromosomal gyrase genes. Just the tip of the iceberg?. Journal of Antimicrobial Chemotherapy, 1998, 42, 683-688.	1.3	68
81	Bacterial pathogens: from natural ecosystems to human hosts. Environmental Microbiology, 2013, 15, 325-333.	1.8	68
82	Double-Face Meets the Bacterial World: The Opportunistic Pathogen Stenotrophomonas maltophilia. Frontiers in Microbiology, 2017, 8, 2190.	1.5	66
83	Gene Transmission in the One Health Microbiosphere and the Channels of Antimicrobial Resistance. Frontiers in Microbiology, 2019, 10, 2892.	1.5	66
84	Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Frontiers in Microbiology, 2020, 11, 1914.	1.5	64
85	Fitness costs associated with the acquisition of antibiotic resistance. Essays in Biochemistry, 2017, 61, 37-48.	2.1	62
86	Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant <i>Pseudomonas aeruginosa</i> Mutants Overexpressing Efflux Pumps. MBio, 2017, 8, .	1.8	61
87	Interplay between intrinsic and acquired resistance to quinolones in <scp><i>Sc/i></i></scp> <i>tenotrophomonas maltophilia</i> . Environmental Microbiology, 2014, 16, 1282-1296.	1.8	60
88	Clinical Impact of the Over-Expression of Efflux Pump in Nonfermentative Gram-Negative Bacilli, Development of Efflux Pump Inhibitors. Current Drug Targets, 2008, 9, 797-807.	1.0	60
89	Editorial: A Multidisciplinary Look at Stenotrophomonas maltophilia: An Emerging Multi-Drug-Resistant Global Opportunistic Pathogen. Frontiers in Microbiology, 2017, 8, 1511.	1.5	58
90	Metagenomic analysis of an urban resistome before and after wastewater treatment. Scientific Reports, 2020, 10, 8174.	1.6	58

#	Article	IF	CITATIONS
91	Contribution of a New Mutation in parE to Quinolone Resistance in Extended-Spectrum-Î ² -Lactamase-Producing Escherichia coli Isolates. Journal of Clinical Microbiology, 2007, 45, 2740-2742.	1.8	57
92	The Efflux Pump SmeDEF Contributes to Trimethoprim-Sulfamethoxazole Resistance in Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2015, 59, 4347-4348.	1.4	56
93	The Origin of Niches and Species in the Bacterial World. Frontiers in Microbiology, 2021, 12, 657986.	1.5	56
94	Polymorphic Mutation Frequencies of Clinical and Environmental <i>Stenotrophomonas maltophilia</i> Populations. Applied and Environmental Microbiology, 2010, 76, 1746-1758.	1.4	55
95	Role of the Multidrug Resistance Efflux Pump MexCD-OprJ in the Pseudomonas aeruginosa Quorum Sensing Response. Frontiers in Microbiology, 2018, 9, 2752.	1.5	53
96	Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. Frontiers in Genetics, 2018, 9, 451.	1.1	52
97	The DSF Quorum Sensing System Controls the Positive Influence of Stenotrophomonas maltophilia on Plants. PLoS ONE, 2013, 8, e67103.	1.1	51
98	Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens. Microbiology Spectrum, 2018, 6, .	1.2	48
99	Small plasmids are involved in amoxicillin-clavulanate resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 1989, 33, 595.	1.4	46
100	Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. BMC Microbiology, 2008, 8, 109.	1.3	46
101	Towards an ecological approach to antibiotics and antibiotic resistance genes. Clinical Microbiology and Infection, 2009, 15, 14-16.	2.8	46
102	Metagenomics and antibiotics. Clinical Microbiology and Infection, 2012, 18, 27-31.	2.8	45
103	Prioritizing risks of antibiotic resistance genes in all metagenomes. Nature Reviews Microbiology, 2015, 13, 396-396.	13.6	45
104	H-NS and RpoS regulate emergence of Lac Ara+ mutants of Escherichia coli MCS2. Journal of Bacteriology, 1997, 179, 4620-4622.	1.0	44
105	High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates. Clinical Microbiology and Infection, 2015, 21, 464-467.	2.8	44
106	Structural and Functional Analysis of SmeT, the Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF. Journal of Biological Chemistry, 2009, 284, 14428-14438.	1.6	43
107	Genomic and metagenomic technologies to explore the antibiotic resistance mobilome. Annals of the New York Academy of Sciences, 2017, 1388, 26-41.	1.8	43
108	Metabolic Compensation of Fitness Costs Associated with Overexpression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2014, 58, 3904-3913.	1.4	42

#	Article	IF	Citations
109	Whole-Genome Sequence of Stenotrophomonas maltophilia D457, a Clinical Isolate and a Model Strain. Journal of Bacteriology, 2012, 194, 3563-3564.	1.0	41
110	Polymorphic Variation in Susceptibility and Metabolism of Triclosan-Resistant Mutants of Escherichia coli and Klebsiella pneumoniae Clinical Strains Obtained after Exposure to Biocides and Antibiotics. Antimicrobial Agents and Chemotherapy, 2015, 59, 3413-3423.	1.4	41
111	Aminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase. Frontiers in Bioscience - Landmark, 1999, 4, d1.	3.0	41
112	Dissemination of Novel Antimicrobial Resistance Mechanisms through the Insertion Sequence Mediated Spread of Metabolic Genes. Frontiers in Microbiology, 2016, 7, 1008.	1.5	40
113	Antibiotic Resistance Evolution Is Contingent on the Quorum-Sensing Response in Pseudomonas aeruginosa. Molecular Biology and Evolution, 2019, 36, 2238-2251.	3.5	40
114	Naringenin Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on Its Time-Dependent Competition With N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Frontiers in Molecular Biosciences, 2020, 7, 25.	1.6	40
115	The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus. PLoS ONE, 2013, 8, e55582.	1.1	40
116	Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics, 2016, 17, 491.	1.2	39
117	Pseudomonas aeruginosa: an antibiotic resilient pathogen with environmental origin. Current Opinion in Microbiology, 2021, 64, 125-132.	2.3	38
118	Regulatory Regions of smeDEF in Stenotrophomonas maltophilia Strains Expressing Different Amounts of the Multidrug Efflux Pump SmeDEF. Antimicrobial Agents and Chemotherapy, 2004, 48, 2274-2276.	1.4	37
119	Increased Mutation Frequencies in Escherichia coli Isolates Harboring Extended-Spectrum β-Lactamases. Antimicrobial Agents and Chemotherapy, 2005, 49, 4754-4756.	1.4	37
120	Normal Mutation Rate Variants Arise in a Mutator (Mut S) Escherichia coli Population. PLoS ONE, 2013, 8, e72963.	1.1	37
121	A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila. Environmental Microbiology, 2005, 7, 1853-1858.	1.8	36
122	Significant Differences Characterise the Correlation Coefficients between Biocide and Antibiotic Susceptibility Profiles in Staphylococcus aureus. Current Pharmaceutical Design, 2015, 21, 2054-2057.	0.9	35
123	Transcriptional regulation ofmexR, the repressor ofPseudomonas aeruginosa mexAB-oprMmultidrug efflux pump. FEMS Microbiology Letters, 2002, 207, 63-68.	0.7	33
124	Experimental validation of Haldane's hypothesis on the role of infection as an evolutionary force for Metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13728-13731.	3.3	33
125	Rapid and robust evolution of collateral sensitivity in <i>Pseudomonas aeruginosa</i> antibiotic-resistant mutants. Science Advances, 2020, 6, eaba5493.	4.7	33
126	Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. International Journal of Molecular Sciences, 2021, 22, 8080.	1.8	33

#	Article	IF	Citations
127	Antimicrobial resistance: A multifaceted problem with multipronged solutions. MicrobiologyOpen, 2019, 8, e945.	1.2	32
128	Involvement of the RND efflux pump transporter SmeH in the acquisition of resistance to ceftazidime in Stenotrophomonas maltophilia. Scientific Reports, 2019, 9, 4917.	1.6	31
129	The development of a new parameter for tracking post-transcriptional regulation allows the detailed map of the Pseudomonas aeruginosa Crc regulon. Scientific Reports, 2018, 8, 16793.	1.6	30
130	The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opinion on Drug Discovery, 2018, 13, 919-931.	2.5	30
131	Microcin-mediated Interactions Between Klebsiella pneumoniae and Escherichia coliStrains. Microbiology (United Kingdom), 1984, 130, 391-400.	0.7	29
132	Incidence of aerobactin production in Gram-negative hospital isolates. FEMS Microbiology Letters, 1987, 43, 351-353.	0.7	29
133	Antibiotic resistance: Time of synthesis in a post-genomic age. Computational and Structural Biotechnology Journal, 2021, 19, 3110-3124.	1.9	28
134	The global regulator Crc orchestrates the metabolic robustness underlying oxidative stress resistance in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2019, 21, 898-912.	1.8	27
135	Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2014, 69, 2972-2978.	1.3	26
136	Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa. Journal of Proteomics, 2015, 127, 352-364.	1.2	26
137	Differential interactions within the Caenorhabditis elegans—Pseudomonas aeruginosa pathogenesis model. Journal of Theoretical Biology, 2003, 225, 469-476.	0.8	24
138	The antibiotic resistome: challenge and opportunity for therapeutic intervention. Future Medicinal Chemistry, 2012, 4, 347-359.	1.1	24
139	Differential Epigenetic Compatibility of qnr Antibiotic Resistance Determinants with the Chromosome of Escherichia coli. PLoS ONE, 2012, 7, e35149.	1.1	24
140	Antiviral effects of green tea (<i>Camellia sinensis</i>) against pathogenic viruses in human and animals (a mini-review). Tropical Journal of Obstetrics and Gynaecology, 2016, 13, 176.	0.3	24
141	Overexpression of the Efflux Pumps SmeVWX and SmeDEF Is a Major Cause of Resistance to Co-trimoxazole in Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	24
142	Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	24
143	The impaired quorum sensing response of Pseudomonas aeruginosa MexABâ€OprM efflux pump overexpressing mutants is not due to nonâ€physiological efflux of 3â€oxo 12â€HSL. Environmental Microbiology, 2020, 22, 5167-5188.	1.8	24
144	Antibiotic inactivating enzymes from a clinical isolate of Agrobacterium radiobacter. Journal of Antimicrobial Chemotherapy, 1989, 23, 283-284.	1.3	23

#	Article	IF	CITATIONS
145	Wildlife and Antibiotic Resistance. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	23
146	Multiple mechanisms of N-phosphonacetyl-L-aspartate resistance in human cell lines: Carbamyl-P synthetase/aspartate transcarbamylase/dihydro-orotase gene amplification is frequent only when chromosome 2 is rearranged. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1816-1821.	3.3	22
147	The efflux pump inhibitor Phe-Arg-beta-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. Journal of Antimicrobial Chemotherapy, 2003, 51, 1042-1045.	1.3	22
148	Fosfomycin and Rifampin Disk Diffusion Tests for Detection of Escherichia coli Mutator Strains. Journal of Clinical Microbiology, 2004, 42, 4310-4312.	1.8	22
149	Evolution under low antibiotic concentrations: a risk for the selection of <i>Pseudomonas aeruginosa</i> multidrugâ€resistant mutants in nature. Environmental Microbiology, 2022, 24, 1279-1293.	1.8	22
150	Short-sighted evolution of bacterial opportunistic pathogens with an environmental origin. Frontiers in Microbiology, 2014, 5, 239.	1.5	21
151	Predictive Studies Suggest that the Risk for the Selection of Antibiotic Resistance by Biocides Is Likely Low in Stenotrophomonas maltophilia. PLoS ONE, 2015, 10, e0132816.	1.1	21
152	Multilevel selection of bcrABDR-mediated bacitracin resistance in Enterococcus faecalis from chicken farms. Scientific Reports, 2016, 6, 34895.	1.6	20
153	Novel Inducers of the Expression of Multidrug Efflux Pumps That Trigger <i>Pseudomonas aeruginosa</i> Transient Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	20
154	The intrinsic resistome of Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 2019, 53, 29-33.	1.1	20
155	Epidemiology of aerobactin production in Enterobacteriaceae. Annales De L'Institut Pasteur Microbiologie, 1986, 137, 297-303.	0.8	19
156	Vitamin K ₃ Induces the Expression of the Stenotrophomonas maltophilia SmeVWX Multidrug Efflux Pump. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	19
157	Interventions on Metabolism: Making Antibiotic-Susceptible Bacteria. MBio, 2017, 8, .	1.8	19
158	Convergent phenotypic evolution towards fosfomycin collateral sensitivity of <i>Pseudomonas aeruginosa</i> antibioticâ€resistant mutants. Microbial Biotechnology, 2022, 15, 613-629.	2.0	19
159	Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 1990, 34, 2093-2096.	1.4	18
160	hns mutant unveils the presence of a latent haemolytic activity in Escherichia coli K-12. Molecular Microbiology, 1996, 19, 909-910.	1.2	18
161	Mutation rate is reduced by increased dosage of <i>mutL</i> gene in <i>Escherichia coli </i> K-12. FEMS Microbiology Letters, 2007, 275, 263-269.	0.7	18
162	Mutational background influences <i>P. aeruginosa</i> ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109370119.	3.3	18

#	Article	IF	CITATIONS
163	Acquisition of antibiotic resistance plasmids in vivo by extraintestinal Salmonella spp Journal of Antimicrobial Chemotherapy, 1987, 20, 452-453.	1.3	17
164	Synergistic effect of dosage and bacterial inoculum in TEM-1 mediated antibiotic resistance. European Journal of Clinical Microbiology and Infectious Diseases, 1988, 7, 778-779.	1.3	17
165	Sewage dilution and loss of antibiotic resistance and virulence determinants in E. coli. FEMS Microbiology Letters, 1989, 59, 93-96.	0.7	17
166	Non-canonical mechanisms of antibiotic resistance. European Journal of Clinical Microbiology and Infectious Diseases, 1994, 13, 1015-1022.	1.3	17
167	Ecological and Temporal Constraints in the Evolution of Bacterial Genomes. Genes, 2011, 2, 804-828.	1.0	17
168	The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response. Frontiers in Microbiology, 2015, 6, 1068.	1.5	17
169	Quantitative proteomics unravels that the post-transcriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa. Data in Brief, 2015, 4, 450-453.	0.5	17
170	The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Medicinal Chemistry, 2016, 8, 1133-1151.	1.1	17
171	Analysis of the Pseudomonas aeruginosa Aminoglycoside Differential Resistomes Allows Defining Genes Simultaneously Involved in Intrinsic Antibiotic Resistance and Virulence. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	17
172	Efflux Pumps as an Important Mechanism for Quinolone Resistance. Advances in Enzymology and Related Areas of Molecular Biology, 2011, 77, 167-235.	1.3	16
173	The Inactivation of Enzymes Belonging to the Central Carbon Metabolism Is a Novel Mechanism of Developing Antibiotic Resistance. MSystems, 2020, 5, .	1.7	16
174	Evolutionary landscapes of Pseudomonas aeruginosa towards ribosome-targeting antibiotic resistance depend on selection strength. International Journal of Antimicrobial Agents, 2020, 55, 105965.	1.1	16
175	Discovery of inhibitors of <scp><i>Pseudomonas aeruginosa</i></scp> virulence through the search for naturalâ€like compounds with a dual role as inducers and substrates of efflux pumps. Environmental Microbiology, 2021, 23, 7396-7411.	1.8	16
176	Rapid Decline of Ceftazidime Resistance in Antibiotic-Free and Sublethal Environments Is Contingent on Genetic Background. Molecular Biology and Evolution, 2022, 39, .	3.5	16
177	Isolation, characterization, and mode of action on Escherichia coli strains of microcin D93. Antimicrobial Agents and Chemotherapy, 1986, 29, 456-460.	1.4	15
178	Pseudomonas fildesensis sp. nov., a psychrotolerant bacterium isolated from Antarctic soil of King George Island, South Shetland Islands. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3255-3263.	0.8	15
179	Allogenous Selection of Mutational Collateral Resistance: Old Drugs Select for New Resistance Within Antibiotic Families. Frontiers in Microbiology, 2021, 12, 757833.	1.5	15
180	Aerobactin-producing multi-resistance plasmids. Journal of Antimicrobial Chemotherapy, 1987, 19, 552-553.	1.3	14

#	Article	IF	Citations
181	Cloning of the determinants for microcin D93 production and analysis of three different D-type microcin plasmids. Plasmid, 1990, 23, 216-225.	0.4	14
182	Are nonlethal targets useful for developing novel antimicrobials? Future Microbiology, 2011, 6, 605-607.	1.0	14
183	Mechanisms and phenotypic consequences of acquisition of tigecycline resistance by Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2019, 74, 3221-3230.	1.3	14
184	Aerobactin production linked to transferable antibiotic resistance in Escherichia colistrains isolated from sewage. FEMS Microbiology Letters, 1988, 50, 57-59.	0.7	13
185	Spread and evolution of natural plasmids harboring transposon Tn5. FEMS Microbiology Ecology, 1996, 19, 63-71.	1.3	12
186	The Inactivation of Intrinsic Antibiotic Resistance Determinants Widens the Mutant Selection Window for Quinolones in Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2012, 56, 6397-6399.	1.4	12
187	Evolution of Habitat-Dependent Antibiotic Resistance in Pseudomonas aeruginosa. Microbiology Spectrum, 2022, 10, .	1.2	11
188	Microcin 15n: a second antibiotic from Escherichia coli LP15 Journal of Antibiotics, 1983, 36, 325-327.	1.0	10
189	Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiology Letters, 1997, 149, 107-113.	0.7	10
190	Role of Non-clinical Environments in the Selection of Virulence and Antibiotic Resistance Determinants in Pathogenic Bacteria. Journal of Biological Sciences, 2005, 6, 1-8.	0.1	10
191	Interkingdom signaling and its consequences for human health. Virulence, 2014, 5, 243-244.	1.8	9
192	Antibiotic-Resistant Klebsiella pneumoniae and Escherichia coli High-Risk Clones and an IncFII $\langle sub \rangle k \langle sub \rangle$ Mosaic Plasmid Hosting Tn $\langle i \rangle 1 \langle i \rangle$ ($\langle i \rangle bla \langle i \rangle \langle sub \rangle TEM-4 \langle sub \rangle$) in Isolates from 1990 to 2004. Antimicrobial Agents and Chemotherapy, 2015, 59, 2904-2908.	1.4	9
193	The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies. Future Medicinal Chemistry, 2016, 8, 1503-1520.	1.1	9
194	Multifactorial determination of systemic invasivity in Escherichia coli. FEMS Microbiology Letters, 1986, 37, 259-261.	0.7	9
195	Antimicrobial Peptide Exposure Selects for Resistant and Fit Stenotrophomonas maltophilia Mutants That Show Cross-Resistance to Antibiotics. MSphere, 2020, 5, .	1.3	9
196	Lack of Evidence for Reduced Fitness of Clinical Staphylococcus aureus Isolates with Reduced Susceptibility to Triclosan. Antimicrobial Agents and Chemotherapy, 2012, 56, 6068-6069.	1.4	8
197	Shigella sonnei bacteremia in an elderly diabetic patient. European Journal of Clinical Microbiology and Infectious Diseases, 1988, 7, 404-405.	1.3	7
198	Epidemiology of antibiotic-inactivating enzymes and DNA probes: the problem of quantity. Journal of Antimicrobial Chemotherapy, 1990, 26, 301-303.	1.3	7

#	Article	IF	Citations
199	Bleomycin increases amikacin and streptomycin resistance in Escherichia coli harboring transposon Tn5. Antimicrobial Agents and Chemotherapy, 1993, 37, 1982-1985.	1.4	7
200	pH modulation of aminoglycoside resistance in Staphylococcus epidermidis harbouring 6′-N-aminoglycoside acetyltransferase. Journal of Antimicrobial Chemotherapy, 1996, 37, 881-889.	1.3	7
201	Regulation of Sm <i>qnr</i> expression by Sm <i>qnrR</i> is strain-specific in <i>Stenotrophomonas maltophilia</i> : Table 1 Journal of Antimicrobial Chemotherapy, 2015, 70, 2913-2914.	1.3	7
202	A wide-ranging Pseudomonas aeruginosa PeptideAtlas build: A useful proteomic resource for a versatile pathogen. Journal of Proteomics, 2021, 239, 104192.	1.2	7
203	Bleomycin-kanamycin resistance as a marker of the presence of transposon Tn5 in clinical strains of Escherichia coli. European Journal of Clinical Microbiology and Infectious Diseases, 1989, 8, 995-998.	1.3	6
204	Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiology Letters, 2006, 149, 107-113.	0.7	6
205	The Evolution of Antibiotic Resistance. , 2011, , 305-337.		6
206	Draft Genome Sequence of Antarctic Pseudomonas sp. Strain KG01 with Full Potential for Biotechnological Applications. Genome Announcements, 2015, 3, .	0.8	6
207	Genome-wide analysis shows that RNase G plays a global role in the stability of mRNAs in Stenotrophomonas maltophilia. Scientific Reports, 2017, 7, 16016.	1.6	6
208	The MexJK Multidrug Efflux Pump Is Not Involved in Acquired or Intrinsic Antibiotic Resistance in Pseudomonas aeruginosa, but Modulates the Bacterial Quorum Sensing Response. International Journal of Molecular Sciences, 2022, 23, 7492.	1.8	6
209	IMMUNOBLOTTING TECHNIQUES. , 1996, , 537-554.		5
210	Use of phenotype microarrays to study the effect of acquisition of resistance to antimicrobials in bacterial physiology. Research in Microbiology, 2016, 167, 723-730.	1.0	5
211	Antibiotic Resistance in the Environment: Expert Perspectives. Handbook of Environmental Chemistry, 2020, , 1-18.	0.2	5
212	Fosfomycin Resistance Evolutionary Pathways of Stenotrophomonas maltophilia in Different Growing Conditions. International Journal of Molecular Sciences, 2022, 23, 1132.	1.8	5
213	Detection of fungal spores from contaminated surfaces by the polymerase chain reaction. World Journal of Microbiology and Biotechnology, 1999, 15, 33-36.	1.7	4
214	Draft Genome Sequences of Two Ralstonia pickettii Strains with Different Aminoglycoside Resistance Phenotypes. Genome Announcements, 2016, 4, .	0.8	4
215	Metagenomics Analysis Reveals an Extraordinary Inner Bacterial Diversity in Anisakids (Nematoda:) Tj ETQq $1\ 1\ 0.7$	784314 rg 1.6	BT ₄ /Overlock
216	Aerobactin production and plasmid distribution in Escherichia coli clinical isolates. FEMS Microbiology Letters, 1989, 60, 41-44.	0.7	4

#	Article	IF	CITATIONS
217	The Antibiotic Fosfomycin Mimics the Effects of the Intermediate Metabolites Phosphoenolpyruvate and Glyceraldehyde-3-Phosphate on the Stenotrophomonas maltophilia Transcriptome. International Journal of Molecular Sciences, 2022, 23, 159.	1.8	4
218	Aerobactin production and plasmid distribution in Escherichia coliclinical isolates. FEMS Microbiology Letters, 1989, 60, 41-44.	0.7	3
219	The Evolution of Antibiotic Resistance. , 2017, , 257-284.		3
220	Point-of-care ultrasound by the pediatrician in the diagnosis and follow-up of community-acquired pneumonia. Jornal De Pediatria, 2021, 97, 13-21.	0.9	3
221	The Plasmidome of <i>Firmicutes </i> : Impact on the Emergence and the Spread of Resistance to Antimicrobials., 0,, 379-419.		3
222	Do bacteria have sex?. Nature, 1991, 352, 288-288.	13.7	2
223	Oleoylanilide, a possible causative agent of toxic oil syndrome, interferes with the cytoskeleton in a neuronal cell line. Neurotoxicology and Teratology, 1997, 19, 147-150.	1.2	2
224	Crosstalk between antibiotic resistance and virulence in Pseudomonas aeruginosa. Reviews in Medical Microbiology, 2005, 16, 155-161.	0.4	2
225	Methods for Measuring the Production of Quorum Sensing Signal Molecules. Methods in Molecular Biology, 2018, 1736, 1-15.	0.4	2
226	The Importance of Abdominal Wall Closure After Definitive Surgery for Enterocutaneous Fistula. World Journal of Surgery, 2020, 44, 3333-3340.	0.8	2
227	The Acquisition of Colistin Resistance Is Associated to the Amplification of a Large Chromosomal Region in Klebsiella pneumoniae kp52145. International Journal of Molecular Sciences, 2021, 22, 649.	1.8	2
228	Glucose-6-phosphate Reduces Fosfomycin Activity Against Stenotrophomonas maltophilia. Frontiers in Microbiology, 2022, 13, .	1.5	2
229	Heavy Metals, Chlorine and Antibiotic Resistance in <i>Escherichia coli</i> Isolates from Ambulatory Patients. Journal of Chemotherapy, 1990, 2, 238-240.	0.7	1
230	Draft Genome Sequences of Four Pseudomonas aeruginosa Isolates Obtained from Patients with Chronic Obstructive Pulmonary Disease. Genome Announcements, 2017, 5, .	0.8	1
231	Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens., 2019,, 139-160.		1
232	Spread and evolution of natural plasmids harboring transposon Tn5., 0,.		1
233	Multi-resistant Enterobacteriaceae in Hospital Practice. , 2004, , 205-243.		0
234	P880 Single-step selection of double mutations leading to high antibiotic-resistance in hyper-mutable Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2007, 29, S227-S228.	1.1	0

#	Article	IF	CITATIONS
235	Evolution of Bacterial Opportunistic Pathogens. , 0, , 85-91.		O
236	Hydrocarbon Degraders as Pathogens. , 2019, , 1-15.		0
237	Explorative assessment of coronavirus-like short sequences from host-associated and environmental metagenomes. Science of the Total Environment, 2021, 793, 148494.	3.9	O
238	Hydrocarbon Degraders as Pathogens. , 2020, , 267-281.		0