Megumu K Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High incidence of <i>NLRP3</i> somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: Results of an international multicenter collaborative study. Arthritis and Rheumatism, 2011, 63, 3625-3632.	6.7	247
2	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	28.8	230
3	Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. Journal of Experimental Medicine, 2009, 206, 1037-1046.	8.5	168
4	Role of the NOD2 genotype in the clinical phenotype of Blau syndrome and earlyâ€onset sarcoidosis. Arthritis and Rheumatism, 2009, 60, 242-250.	6.7	149
5	Recapitulating the human segmentation clock with pluripotent stem cells. Nature, 2020, 580, 124-129.	27.8	148
6	Derivation of Mesenchymal Stromal Cells from Pluripotent Stem Cells through a Neural Crest Lineage using Small Molecule Compounds with Defined Media. PLoS ONE, 2014, 9, e112291.	2.5	137
7	Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood, 2008, 111, 2132-2141.	1.4	134
8	Somatic mosaicism ofCIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis and Rheumatism, 2005, 52, 3579-3585.	6.7	125
9	Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions. PLoS ONE, 2013, 8, e59243.	2.5	114
10	Identification of a Highâ€Frequency Somatic <i>NLRC4</i> Mutation as a Cause of Autoinflammation by Pluripotent Cell–Based Phenotype Dissection. Arthritis and Rheumatology, 2017, 69, 447-459.	5.6	106
11	A Novel Serum-Free Monolayer Culture for Orderly Hematopoietic Differentiation of Human Pluripotent Cells via Mesodermal Progenitors. PLoS ONE, 2011, 6, e22261.	2.5	105
12	Somatic <i>NLRP3</i> mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Annals of the Rheumatic Diseases, 2015, 74, 603-610.	0.9	104
13	Disease-associated mutations in CIAS1 induce cathepsin B–dependent rapid cell death of human THP-1 monocytic cells. Blood, 2007, 109, 2903-2911.	1.4	97
14	Modeling the Early Phenotype at the Neuromuscular Junction of Spinal Muscular Atrophy Using Patient-Derived iPSCs. Stem Cell Reports, 2015, 4, 561-568.	4.8	92
15	SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2005, 115, 636-638.	2.9	81
16	Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood, 2012, 120, 1299-1308.	1.4	61
17	Detection of Base Substitution-Type Somatic Mosaicism of the NLRP3 Gene with >99.9% Statistical Confidence by Massively Parallel Sequencing. DNA Research, 2012, 19, 143-152.	3.4	51
18	Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica, 2014, 99, 19-27.	3.5	51

#	Article	IF	CITATIONS
19	iPSC-derived functional human neuromuscular junctions model the pathophysiology of neuromuscular diseases. JCI Insight, 2019, 4, .	5.0	50
20	Clinical characteristics and treatment of 50 cases of Blau syndrome in Japan confirmed by genetic analysis of the <i>NOD2</i> mutation. Annals of the Rheumatic Diseases, 2020, 79, 1492-1499.	0.9	47
21	Pluripotent stem cell models of Blau syndrome reveal an IFN-γ–dependent inflammatory response in macrophages. Journal of Allergy and Clinical Immunology, 2018, 141, 339-349.e11.	2.9	44
22	Orderly hematopoietic development of induced pluripotent stem cells via Flkâ€1 ⁺ hemoangiogenic progenitors. Journal of Cellular Physiology, 2009, 221, 367-377.	4.1	41
23	Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Scientific Reports, 2018, 8, 12865.	3.3	39
24	Rescue of recurrent deep intronic mutation underlying cell type–dependent quantitative NEMO deficiency. Journal of Clinical Investigation, 2018, 129, 583-597.	8.2	38
25	Mislocalization of syntaxinâ€1 and impaired neurite growth observed in a human <scp>iPSC</scp> model for <i><scp>STXBP</scp>1</i> â€related epileptic encephalopathy. Epilepsia, 2016, 57, e81-6.	5.1	37
26	Laminin-guided highly efficient endothelial commitment from human pluripotent stem cells. Scientific Reports, 2016, 6, 35680.	3.3	37
27	Identification of Hepatic Niche Harboring Human Acute Lymphoblastic Leukemic Cells via the SDF-1/CXCR4 Axis. PLoS ONE, 2011, 6, e27042.	2.5	36
28	Enhanced Chondrogenesis of Induced Pluripotent Stem Cells From Patients With Neonatalâ€Onset Multisystem Inflammatory Disease Occurs via the Caspase 1–Independent cAMP/Protein Kinase A/CREB Pathway. Arthritis and Rheumatology, 2015, 67, 302-314.	5.6	34
29	Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. Blood, 2012, 119, 5458-5466.	1.4	30
30	Pluripotent Cell Models of Fanconi Anemia Identify the Early Pathological Defect in Human Hemoangiogenic Progenitors. Stem Cells Translational Medicine, 2015, 4, 333-338.	3.3	30
31	Pluripotent Stem Cell Model of Nakajo-Nishimura Syndrome Untangles Proinflammatory Pathways Mediated by Oxidative Stress. Stem Cell Reports, 2018, 10, 1835-1850.	4.8	28
32	A novel variant fibrinogen, deletion of Bβ111Ser in coiled-coil region, affecting fibrin lateral aggregation. Clinica Chimica Acta, 2006, 365, 160-167.	1.1	24
33	Multiple Reversions of an IL2RG Mutation Restore T cell Function in an X-linked Severe Combined Immunodeficiency Patient. Journal of Clinical Immunology, 2012, 32, 690-697.	3.8	24
34	Hypoxic adaptation of leukemic cells infiltrating the CNS affords a therapeutic strategy targeting VEGFA. Blood, 2017, 129, 3126-3129.	1.4	23
35	The Inflammasome, an Innate Immunity Guardian, Participates in Skin Urticarial Reactions and Contact Hypersensitivity. Allergology International, 2010, 59, 105-113.	3.3	22
36	Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations. Nature Communications, 2019, 10, 4856.	12.8	22

#	Article	IF	CITATIONS
37	Functional evaluation of the pathological significance of MEFV variants using induced pluripotent stem cell–derived macrophages. Journal of Allergy and Clinical Immunology, 2019, 144, 1438-1441.e12.	2.9	21
38	Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions. Biochemical and Biophysical Research Communications, 2019, 515, 1-8.	2.1	21
39	Establishment of isogenic iPSCs from an individual with SCN1A mutation mosaicism as a model for investigating neurocognitive impairment in Dravet syndrome. Journal of Human Genetics, 2016, 61, 565-569.	2.3	20
40	Analysis of disease model iPSCs derived from patients with a novel Fanconi anemia–like IBMFS <i>ADH5/ALDH2</i> deficiency. Blood, 2021, 137, 2021-2032.	1.4	20
41	Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. Journal of Experimental Medicine, 2022, 219, .	8.5	18
42	Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors. Biochemical and Biophysical Research Communications, 2018, 497, 719-725.	2.1	15
43	Induced pluripotent stem cell-derived monocytic cell lines from a NOMID patient serve as a screening platform for modulating NLRP3 inflammasome activity. PLoS ONE, 2020, 15, e0237030.	2.5	12
44	Infantile hepatic dysfunction improved by elimination of cows' milk formulas. Pediatric Allergy and Immunology, 2005, 16, 445-448.	2.6	11
45	Lysosomal membrane permeabilization causes secretion of IL-1β in human vascular smooth muscle cells. Inflammation Research, 2018, 67, 879-889.	4.0	10
46	Down syndrome-related transient abnormal myelopoiesis is attributed to a specific erythro-megakaryocytic subpopulation with GATA1 mutation. Haematologica, 2021, 106, 635-640.	3.5	10
47	Potential Benefits of TNF Targeting Therapy in Blau Syndrome, a NOD2-Associated Systemic Autoinflammatory Granulomatosis. Frontiers in Immunology, 0, 13, .	4.8	10
48	Application of induced pluripotent stem cells to primary immunodeficiency diseases. Experimental Hematology, 2019, 71, 43-50.	0.4	9
49	Anti-TNF treatment corrects IFN-γ–dependent proinflammatory signatures in Blau syndrome patient–derived macrophages. Journal of Allergy and Clinical Immunology, 2022, 149, 176-188.e7.	2.9	9
50	Hemogenic Endothelium Differentiation from Human Pluripotent Stem Cells in A Feeder- and Xeno-free Defined Condition. Journal of Visualized Experiments, 2019, , .	0.3	8
51	Blau Syndrome: NOD2-related systemic autoinflammatory granulomatosis. Giornale Italiano Di Dermatologia E Venereologia, 2020, 155, 537-541.	0.8	8
52	Enhanced NF-κB activation with an inflammasome activator correlates with activity of autoinflammatory disease associated with NLRP3 mutations outside of exon 3: Comment on the article by Jéru et al. Arthritis and Rheumatism, 2010, 62, 3123-3124.	6.7	7
53	Pluripotent stem cell model of early hematopoiesis in Down syndrome reveals quantitative effects of short-form GATA1 protein on lineage specification. PLoS ONE, 2021, 16, e0247595.	2.5	7
54	Japanese Cedar-Pollen-Specific IL-5 Production in Infants with Atopic Dermatitis. International Archives of Allergy and Immunology, 2004, 135, 343-347.	2.1	6

#	Article	IF	CITATIONS
55	Biomimetic aorta-gonad-mesonephros-on-a-chip to study human developmental hematopoiesis. Biomedical Microdevices, 2020, 22, 34.	2.8	6
56	Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Translational Medicine, 2021, 10, 455-464.	3.3	6
57	VEGFA- a New Therapeutic Target in CNS Leukemia. Blood, 2016, 128, 911-911.	1.4	6
58	Phenomic Screen in Vivo and in Vitro to Explore Novel Pathogenesis of AML1-ETO-Positive Leukemia Using PSC-Derived Hematopoietic Cells. Blood, 2014, 124, 2370-2370.	1.4	6
59	Induced pluripotent stem cells representing Nakajo-Nishimura syndrome. Inflammation and Regeneration, 2019, 39, 11.	3.7	4
60	Generation of a human induced pluripotent stem cell line, BRCi001-A, derived from a patient with mucopolysaccharidosis type I. Stem Cell Research, 2019, 36, 101406.	0.7	4
61	Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model. Journal of Human Genetics, 2019, 64, 445-458.	2.3	4
62	Pluripotent stem cell model of Shwachman–Diamond syndrome reveals apoptotic predisposition of hemoangiogenic progenitors. Scientific Reports, 2020, 10, 14859.	3.3	4
63	Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Frontiers in Immunology, 2022, 13, .	4.8	4
64	A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges. International Journal of Hematology, 2016, 104, 647-660.	1.6	3
65	Elucidation of the Pathogenesis of Autoinflammatory Diseases Using iPS Cells. Children, 2021, 8, 94.	1.5	3
66	N-Acetylcysteine prevents amyloid-β secretion in neurons derived from human pluripotent stem cells with trisomy 21. Scientific Reports, 2021, 11, 17377.	3.3	3
67	In vitro Neuromuscular Junction Induced from Human Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2020, , .	0.3	3
68	Generation of human induced pluripotent stem cell lines derived from four DiGeorge syndrome patients with 22q11.2 deletion. Stem Cell Research, 2022, 61, 102744.	0.7	3
69	Disease modeling of immunological disorders using induced pluripotent stem cells. Immunological Medicine, 2018, 41, 68-74.	2.6	2
70	Beneficial effect of methotrexate on a child case of Nakajo–Nishimura syndrome. Journal of Dermatology, 2019, 46, e365-e367.	1.2	2
71	Induced pluripotent stem cells established from a female patient with Xq22 deletion confirm that BEX2 escapes from Xâ€chromosome inactivation. Congenital Anomalies (discontinued), 2021, 61, 63-67.	0.6	2
72	Generation of two human induced pluripotent stem cell lines derived from two X-linked adrenoleukodystrophy patients with ABCD1 mutations. Stem Cell Research, 2021, 53, 102337.	0.7	2

#	Article	IF	CITATIONS
73	A CIAS1 mutation in a Japanese girl with familial cold autoinflammatory syndrome. European Journal of Pediatrics, 2008, 167, 245-247.	2.7	1
74	Microarray analyses of otospheres derived from the cochlea in the inner ear identify putative transcription factors that regulate the characteristics of otospheres. PLoS ONE, 2017, 12, e0179901.	2.5	1
75	Autoinflammatory diseases - a new entity of inflammation. Inflammation and Regeneration, 2011, 31, 125-136.	3.7	1
76	Disease-associated iPS cell lines representing hematological and immunological disorders. Inflammation and Regeneration, 2012, 32, 171-177.	3.7	1
77	NK Cells from Human Pluripotent Stem Cells for Immunotherapy. Blood, 2018, 132, 4955-4955.	1.4	1
78	StemPanTox: A fast and wide-target drug assessment system for tailor-made safety evaluations using personalized iPS cells. IScience, 2022, 25, 104538.	4.1	1
79	Disease Modeling of Hematological and Immunological Disorders Using Induced Pluripotent Stem Cells. Current Human Cell Research and Applications, 2019, , 15-27.	0.1	Ο
80	Establishment of a Novel CNS Infiltrated Xenograft Model through Engraftment of Patient-Derived Acute Lymphoblastic Leukemic Cells Into NOD/SCID/γc Null Mouse. Blood, 2010, 116, 3248-3248.	1.4	0
81	Disease Modeling and Drug Discovery Using Induced Pluripotent Stem Cells From CINCA Syndrome Patients. Blood, 2012, 120, 4680-4680.	1.4	Ο
82	Mesodermal Development From Reprogrammed Fanconi Anemia Cells Is Affected by ALDH2 Enzymatic Activity. Blood, 2012, 120, 648-648.	1.4	0
83	Exploring the Pathogenesis of Down Syndrome-Related Myeloproliferative Disorders Using iPSCs. Blood, 2014, 124, 868-868.	1.4	0
84	Recapitulation of Transient Abnormal Myelopoiesis Using Patient Derived iPSCs. Blood, 2015, 126, 4115-4115.	1.4	0
85	Hematological Disorders. , 2016, , 69-81.		Ο
86	PSC-Derived Hematopoietic System to Elucidate the Cooperation Between Gene Alterations and Cell Lineages in Leukemogenesis. Blood, 2016, 128, 1522-1522.	1.4	0
87	Induction of Natural Killer Cells from Human Pluripotent Stem Cells Under Chemically Defined Condition. Blood, 2016, 128, 1345-1345.	1.4	Ο
88	Hepatoma-Derived Growth Factor Is a Novel Factor to Promote the Proliferation of Hematopoietic Stem Cells. Blood, 2016, 128, 1471-1471.	1.4	0
89	iPSC-Based Phenomic Screen Revealed an Impact of Uncontrolled NFkB Activity at the Initiating Stages of AML1-ETO Related Leukemia. Blood, 2018, 132, 3911-3911.	1.4	0
90	A Japanese case of familial Mediterranean fever with a MEFV gene mutation. Hokkaido Journal of Medical Science, 2009, 84, 419-22.	0.1	0

#	Article	IF	CITATIONS
91	Induction of Human Natural Killer Cells Under Defined Conditions by Seamless Transition from Maintenance Culture of Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2463, 47-52.	0.9	0
92	Title is missing!. , 2020, 15, e0237030.		0
93	Title is missing!. , 2020, 15, e0237030.		0
94	Title is missing!. , 2020, 15, e0237030.		0
95	Title is missing!. , 2020, 15, e0237030.		0