Ranjit Ray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827155/publications.pdf Version: 2024-02-01

Ρανιίτ Ραν

#	Article	IF	CITATIONS
1	Circulatory Exosomes from COVID-19 Patients Trigger NLRP3 Inflammasome in Endothelial Cells. MBio, 2022, 13, e0095122.	4.1	24
2	Modified E2 Glycoprotein of Hepatitis C Virus Enhances Proinflammatory Cytokines and Protective Immune Response. Journal of Virology, 2022, 96, .	3.4	7
3	Inhibition of p70 isoforms of S6K1 induces anoikis to prevent transformed human hepatocyte growth. Life Sciences, 2021, 265, 118764.	4.3	9
4	Hepatitis C virus associated hepatocellular carcinoma. Advances in Cancer Research, 2021, 149, 103-142.	5.0	18
5	Inhibition of Long Noncoding RNA Lincâ€Pint by Hepatitis C Virus in Infected Hepatocytes Enhances Lipogenesis. Hepatology, 2021, 74, 41-54.	7.3	18
6	Exosomes from COVID-19 Patients Carry Tenascin-C and Fibrinogen-β in Triggering Inflammatory Signals in Cells of Distant Organ. International Journal of Molecular Sciences, 2021, 22, 3184.	4.1	44
7	IL-6 Induction and Signaling: Horizons of COVID-19-Related Pathogenesis. DNA and Cell Biology, 2021, 40, 639-642.	1.9	4
8	SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in Endothelial Cells. Journal of Virology, 2021, 95, e0079421.	3.4	48
9	Hepatitis C Virus Evades Interferon Signaling by Suppressing Long Noncoding RNA Linc-Pint Involving C/EBP-l². Journal of Virology, 2021, 95, e0095221.	3.4	11
10	Akt inhibitor augments anti-proliferative efficacy of a dual mTORC1/2 inhibitor by FOXO3a activation in p53 mutated hepatocarcinoma cells. Cell Death and Disease, 2021, 12, 1073.	6.3	9
11	Hepatitis C Virus Mediated Inhibition of miRâ€181c Activates ATM Signaling and Promotes Hepatocyte Growth. Hepatology, 2020, 71, 780-793.	7.3	16
12	A combination of AZD5363 and FH5363 induces lethal autophagy in transformed hepatocytes. Cell Death and Disease, 2020, 11, 540.	6.3	14
13	Establishment of a Patientâ€Derived Xenograft Tumor From Hepatitis C–Associated Liver Cancer and Evaluation of Imatinib Treatment Efficacy. Hepatology, 2020, 72, 379-388.	7.3	12
14	SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathogens, 2020, 16, e1009128.	4.7	157
15	Hepatitis C Virus Manipulates Humans as its Favorite Host for a Longâ€Term Relationship. Hepatology, 2019, 69, 889-900.	7.3	19
16	Transforming Growth Factor β Acts as a Regulatory Molecule for Lipogenic Pathways among Hepatitis C Virus Genotype-Specific Infections. Journal of Virology, 2019, 93, .	3.4	8
17	Strategies to Circumvent Host Innate Immune Response by Hepatitis C Virus. Cells, 2019, 8, 274.	4.1	13
18	Rapid hepatitis C virus clearance by antivirals correlates with immune status of infected patients. Journal of Medical Virology, 2019, 91, 411-418.	5.0	19

Ranjit Ray

#	Article	IF	CITATIONS
19	Hepatitis C Virus E2 Envelope Glycoprotein Induces an Immunoregulatory Phenotype in Macrophages. Hepatology, 2019, 69, 1873-1884.	7.3	25
20	Complement Regulation and Immune Evasion by Hepatitis C Virus. Methods in Molecular Biology, 2019, 1911, 337-347.	0.9	4
21	Association between MicroRNA-373 and Long Noncoding RNA NORAD in Hepatitis C Virus-Infected Hepatocytes Impairs Wee1 Expression for Growth Promotion. Journal of Virology, 2018, 92, .	3.4	21
22	Exosome-Mediated Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic Stellate Cells. Journal of Virology, 2017, 91, .	3.4	133
23	Hepatitis C virus–induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology, 2017, 66, 746-757.	7.3	58
24	Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death and Disease, 2017, 8, e3106-e3106.	6.3	78
25	N-terminal gelsolin fragment potentiates TRAIL mediated death in resistant hepatoma cells. Scientific Reports, 2017, 7, 12803.	3.3	5
26	Hepatitis C virus–induced tumorâ€initiating cancer stem–like cells activate stromal fibroblasts in a xenograft tumor model. Hepatology, 2017, 66, 1766-1778.	7.3	19
27	Hepatitis C Virus Core Protein Modulates Endoglin (CD105) Signaling Pathway for Liver Pathogenesis. Journal of Virology, 2017, 91, .	3.4	22
28	Distinct CD55 Isoform Synthesis and Inhibition of Complement-Dependent Cytolysis by Hepatitis C Virus. Journal of Immunology, 2016, 197, 1127-1136.	0.8	14
29	Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. Journal of Virology, 2016, 90, 1387-1396.	3.4	124
30	MicroRNAs: Role in hepatitis C virus pathogenesis. Genes and Diseases, 2015, 2, 35-45.	3.4	68
31	Interferon-α inducible protein 6 impairs EGFR activation by CD81 and inhibits hepatitis C virus infection. Scientific Reports, 2015, 5, 9012.	3.3	55
32	Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes. Journal of Virology, 2015, 89, 11549-11556.	3.4	37
33	Transcriptional Suppression of miR-181c by Hepatitis C Virus Enhances Homeobox A1 Expression. Journal of Virology, 2014, 88, 7929-7940.	3.4	58
34	Inhibition of C3 Convertase Activity by Hepatitis C Virus as an Additional Lesion in the Regulation of Complement Components. PLoS ONE, 2014, 9, e101422.	2.5	15
35	Hepatitis C virus infection and insulin resistance. World Journal of Diabetes, 2014, 5, 52.	3.5	85
36	Hepatitis C virus infection: establishment of chronicity and liver disease progression. EXCLI Journal, 2014, 13, 977-96.	0.7	26

Ranjit Ray

#	Article	IF	CITATIONS
37	Hepatitis C Virus Suppresses C9 Complement Synthesis and Impairs Membrane Attack Complex Function. Journal of Virology, 2013, 87, 5858-5867.	3.4	40
38	Hepatitis C Virus Proteins Inhibit C3 Complement Production. Journal of Virology, 2012, 86, 2221-2228.	3.4	74
39	N-Terminal Region of Gelsolin Induces Apoptosis of Activated Hepatic Stellate Cells by a Caspase-Dependent Mechanism. PLoS ONE, 2012, 7, e44461.	2.5	12
40	Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes. Hepatology, 2011, 54, 1149-1156.	7.3	64
41	ISC56 and IFITM1 Proteins Inhibit Hepatitis C Virus Replication. Journal of Virology, 2011, 85, 12881-12889.	3.4	137
42	Transcriptional Repression of C4 Complement by Hepatitis C Virus Proteins. Journal of Virology, 2011, 85, 4157-4166.	3.4	51
43	Progress Toward Development of a Hepatitis C Vaccine with Broad Shoulders. Science Translational Medicine, 2011, 3, 94ps33.	12.4	16
44	A Weak Neutralizing Antibody Response to Hepatitis C Virus Envelope Glycoprotein Enhances Virus Infection. PLoS ONE, 2011, 6, e23699.	2.5	22
45	Hepatitis C virus core protein interacts with fibrinogen-β and attenuates cytokine stimulated acute-phase response. Hepatology, 2010, 51, 1505-1513.	7.3	23
46	Hepatitis C Virus Infection Impairs IRF-7 Translocation and Alpha Interferon Synthesis in Immortalized Human Hepatocytes. Journal of Virology, 2010, 84, 10991-10998.	3.4	44
47	Characterization of Antibodies Induced by Vaccination with Hepatitis C Virus Envelope Glycoproteins. Journal of Infectious Diseases, 2010, 202, 862-866.	4.0	99
48	Stellate cell apoptosis by a soluble mediator from immortalized human hepatocytes. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1391-1400.	4.9	22
49	Functional properties of a 16â€kDa protein translated from an alternative open reading frame of the core-encoding genomic region of hepatitis C virus. Journal of General Virology, 2004, 85, 2299-2306.	2.9	32
50	Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. Virology, 2004, 321, 181-188.	2.4	44
51	Hepatitis C Virus Envelope Glycoproteins and Potential for Vaccine Development. Vox Sanguinis, 2002, 83, 27-32.	1.5	9
52	Immunoregulatory role of secreted glycoprotein G from respiratory syncytial virus. Virus Research, 2001, 75, 147-154.	2.2	13