Hans Thordal-Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 1997, 11, 1187-1194.	2.8	2,406
2	SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 2003, 425, 973-977.	13.7	904
3	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	6.0	725
4	The PEN1 Syntaxin Defines a Novel Cellular Compartment upon Fungal Attack and Is Required for the Timely Assembly of Papillae. Molecular Biology of the Cell, 2004, 15, 5118-5129.	0.9	359
5	Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology, 2003, 6, 351-357.	3.5	357
6	A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nature Cell Biology, 2011, 13, 853-859.	4.6	258
7	Structure and evolution of barley powdery mildew effector candidates. BMC Genomics, 2012, 13, 694.	1.2	238
8	<i>Arabidopsis</i> ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11443-11448.	3.3	193
9	Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant Journal, 1995, 8, 139-145.	2.8	192
10	Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics, 2010, 11, 317.	1.2	177
11	A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant Journal, 2007, 49, 302-312.	2.8	172
12	The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 2002, 3, 135-144.	2.0	163
13	Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza, 2006, 16, 413-419.	1.3	161
14	Trans-kingdom Cross-Talk: Small RNAs on the Move. PLoS Genetics, 2014, 10, e1004602.	1.5	142
15	Molecular Characterization of the Oxalate Oxidase Involved in the Response of Barley to the Powdery Mildew Fungus1. Plant Physiology, 1998, 117, 33-41.	2.3	139
16	The Germinlike Protein GLP4 Exhibits Superoxide Dismutase Activity and Is an Important Component of Quantitative Resistance in Wheat and Barley. Molecular Plant-Microbe Interactions, 2004, 17, 109-117.	1.4	138
17	An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Molecular Biology, 1998, 36, 101-112.	2.0	134
18	Interaction of barley powdery mildew effector candidate <scp>CSEP0055</scp> with the defence protein <scp>PR17c</scp> . Molecular Plant Pathology, 2012, 13, 1110-1119.	2.0	115

#	Article	IF	CITATIONS
19	The Multivesicular Body-Localized GTPase ARFA1b/1c Is Important for Callose Deposition and ROR2 Syntaxin-Dependent Preinvasive Basal Defense in Barley. Plant Cell, 2010, 22, 3831-3844.	3.1	106
20	Arabidopsis Phospholipase Dδ Is Involved in Basal Defense and Nonhost Resistance to Powdery Mildew Fungi Â. Plant Physiology, 2013, 163, 896-906.	2.3	102
21	cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiological and Molecular Plant Pathology, 1992, 40, 395-409.	1.3	98
22	Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2. Journal of Biological Chemistry, 2011, 286, 31297-31307.	1.6	94
23	The Barley Powdery Mildew Candidate Secreted Effector Protein CSEP0105 Inhibits the Chaperone Activity of a Small Heat Shock Protein Â. Plant Physiology, 2015, 168, 321-333.	2.3	91
24	A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum. Plant Molecular Biology, 1993, 21, 1097-1108.	2.0	77
25	Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiology Ecology, 1993, 12, 97-105.	1.3	77
26	What are the prospects for genetically engineered, disease resistant plants?. European Journal of Plant Pathology, 2008, 121, 217-231.	0.8	77
27	A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling. Molecular Plant, 2008, 1, 510-527.	3.9	76
28	Nar-1 and Nar-2, Two Loci Required for Mla 12 -Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell, 1994, 6, 983.	3.1	65
29	The stripe rust fungal effector <scp>PEC</scp> 6 suppresses patternâ€triggered immunity in a host speciesâ€independent manner and interacts with adenosine kinases. New Phytologist, 2016, , .	3.5	60
30	Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons. PLoS ONE, 2009, 4, e7463.	1.1	60
31	A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L Transgenic Research, 2008, 17, 965-975.	1.3	59
32	Agrobacterium tumefaciens: From crown gall tumors to genetic transformation. Physiological and Molecular Plant Pathology, 2011, 76, 76-81.	1.3	58
33	A holistic view on plant effector-triggered immunity presented as an iceberg model. Cellular and Molecular Life Sciences, 2020, 77, 3963-3976.	2.4	58
34	A proteomics study of barley powdery mildew haustoria. Proteomics, 2009, 9, 3222-3232.	1.3	56
35	A pathogenâ€induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant Journal, 1992, 2, 815-820.	2.8	53
36	Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Molecular Biology, 2002, 49, 137-147.	2.0	50

HANS THORDAL-CHRISTENSEN

#	Article	IF	CITATIONS
37	Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction. Plant Journal, 2000, 23, 245-254.	2.8	46
38	Single-Cell Transcript Profiling of Barley Attacked by the Powdery Mildew Fungus. Molecular Plant-Microbe Interactions, 2007, 20, 235-246.	1.4	42
39	The Barley Powdery Mildew Effector Candidates CSEP0081 and CSEP0254 Promote Fungal Infection Success. PLoS ONE, 2016, 11, e0157586.	1.1	42
40	Expression of a defence-related intercellular barley peroxidase in transgenic tobacco. Plant Science, 1997, 122, 173-182.	1.7	38
41	The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane. Journal of Experimental Botany, 2017, 68, 5731-5743.	2.4	38
42	Transcytosis shuts the door for an unwanted guest. Trends in Plant Science, 2013, 18, 611-616.	4.3	36
43	Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels. Plant Molecular Biology Reporter, 1996, 14, 266-272.	1.0	35
44	Mechanisms of Induced Resistance in Barley Against Drechslera teres. Phytopathology, 1998, 88, 698-707.	1.1	35
45	Recycling of Arabidopsis plasma membrane PEN1 syntaxin. Plant Signaling and Behavior, 2012, 7, 1541-1543.	1.2	34
46	Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease?. Molecular Plant Pathology, 2018, 19, 781-785.	2.0	34
47	VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity. Plant Cell, 2017, 29, 1927-1937.	3.1	28
48	The Barley/Blumeria (Syn. Erysiphe) Graminis Interaction. , 2000, , 77-100.		25
49	Accumulation of a putative guanidine compound in relation to other early defence reactions in epidermal cells of barley and wheat exhibiting resistance to Erysiphe graminis f.sp. hordei. Physiological and Molecular Plant Pathology, 1994, 45, 469-484.	1.3	21
50	A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants. PLoS ONE, 2017, 12, e0170118.	1.1	19
51	Genetics of avirulence genes in Blumeria graminis f.sp. hordei and physical mapping of AVRa22 and AVRa12. Fungal Genetics and Biology, 2008, 45, 243-252.	0.9	17
52	Genetic mapping of the barley lodging resistance locus <i><scp>E</scp>rectoidesâ€k</i> . Plant Breeding, 2016, 135, 420-428.	1.0	17
53	A component of the Sec61 ER protein transporting pore is required for plant susceptibility to powdery mildew. Frontiers in Plant Science, 2013, 4, 127.	1.7	16
54	A barley cDNA clone encoding a type III chlorophyll a/b-binding polypeptide of the light-harvesting complex II. Plant Molecular Biology, 1992, 19, 699-703.	2.0	15

#	Article	IF	CITATIONS
55	Characterization of the transcript of a new class of retroposon-type repetitive element cloned from the powdery mildew fungus,Erysiphe graminis. Molecular Genetics and Genomics, 1996, 250, 477-482.	2.4	13
56	Reply: On ARF1 Localizes to the Golgi and the <i>Trans</i> -Golgi Network: Future Challenge in Plant Multivesicular Body Studies. Plant Cell, 2011, 23, 849-850.	3.1	12
57	The AMSH3 ESCRT-III-Associated Deubiquitinase Is Essential for Plant Immunity. Cell Reports, 2018, 25, 2329-2338.e5.	2.9	12
58	Barley isochorismate synthase mutant is phylloquinone-deficient, but has normal basal salicylic acid level. Plant Signaling and Behavior, 2019, 14, 1671122.	1.2	9
59	cDNA Cloning and Characterization of mRNAs Induced in Barley by the Fungal Pathogen, Erysiphe Graminis. Developments in Plant Pathology, 1993, , 304-307.	0.1	9
60	Chapter 3 From Nonhost Resistance to Lesion-Mimic Mutants. Advances in Botanical Research, 2009, 51, 91-121.	0.5	6
61	The isoelectric point of proteins influences their translocation to the extrahaustorial matrix of the barley powdery mildew fungus. Cellular Microbiology, 2019, 21, e13091.	1.1	6
62	The Induction of Gene Expression in Response to Pathogenic Microbes. , 2021, , 391-433.		5
63	Loss of VPS9b enhances vps9a-2 phenotypes. Plant Signaling and Behavior, 2018, 13, e1445950.	1.2	3
64	Vesicle Trafficking in Plant Pathogen Defence. Signaling and Communication in Plants, 2009, , 287-301.	0.5	2
65	Mutant Muddle: Some Arabidopsis <i>eds5</i> Mutant Lines Have a Previously Unnoticed Second-Site Mutation in <i>FAH1</i> . Plant Physiology, 2020, 182, 460-462.	2.3	2
66	What are the prospects for genetically engineered, disease resistant plants?. , 2007, , 217-231.		0