
Meixia Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826899/publications.pdf Version: 2024-02-01

Μειχίλ Ζηλο

#	Article	IF	CITATIONS
1	Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of <i>Brassica</i> genomes. Plant Journal, 2021, 105, 34-48.	5.7	5
2	Asymmetric Evolution of Transposable Elements in Brassica oleracea. Compendium of Plant Genomes, 2021, , 77-90.	0.5	0
3	The <i>mop1</i> mutation affects the recombination landscape in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
4	Silencing of <i>Mutator</i> Elements in Maize Involves Distinct Populations of Small RNAs and Distinct Patterns of DNA Methylation. Genetics, 2020, 215, 379-391.	2.9	19
5	Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Research, 2020, 48, 6685-6698.	14.5	30
6	Small RNA-Mediated <i>De Novo</i> Silencing of <i>Ac/Ds</i> Transposons Is Initiated by Alternative Transposition in Maize. Genetics, 2020, 215, 393-406.	2.9	11
7	Cost-Effective Profiling of Mutator Transposon Insertions in Maize by Next-Generation Sequencing. Methods in Molecular Biology, 2020, 2072, 39-50.	0.9	2
8	Genome-wide Estimation of Evolutionary Distance and Phylogenetic Analysis of Homologous Genes. Bio-protocol, 2018, 8, e3097.	0.4	3
9	Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean. Plant Journal, 2017, 90, 1120-1133.	5.7	51
10	Transposable Elements. Compendium of Plant Genomes, 2017, , 171-181.	0.5	0
11	Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. Plant Cell, 2017, 29, 2974-2994.	6.6	88
12	Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics, 2016, 129, 2379-2386.	3.6	54
13	Coordination of MicroRNAs, PhasiRNAs, and NB‣RR Genes in Response to a Plant Pathogen: Insights from Analyses of a Set of Soybean Rps Gene Nearâ€isogenic Lines. Plant Genome, 2015, 8, eplantgenome2014.09.0044.	2.8	31
14	GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nature Genetics, 2015, 47, 939-943.	21.4	85
15	Evolutionary Patterns and Coevolutionary Consequences of <i>MIRNA</i> Genes and MicroRNA Targets Triggered by Multiple Mechanisms of Genomic Duplications in Soybean. Plant Cell, 2015, 27, 546-562.	6.6	89
16	Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics, 2014, 15, 18.	2.8	67
17	<i>Dt2</i> ls a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean Â. Plant Cell, 2014, 26, 2831-2842.	6.6	136
18	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	12.6	2,089

Μειχία Ζηάο

#	Article	IF	CITATIONS
19	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	12.8	918
20	Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics, 2013, 14, 664.	2.8	99
21	Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace Pl 567139B. Theoretical and Applied Genetics, 2013, 126, 2177-2185.	3.6	84
22	Co-evolution of plant LTR-retrotransposons and their host genomes. Protein and Cell, 2013, 4, 493-501.	11.0	42
23	Shifts in the evolutionary rate and intensity of purifying selection between two <i>Brassica</i> genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant Journal, 2013, 76, 211-222.	5.7	38
24	The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 2013, 14, r53.	8.8	225
25	Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean Â. Plant Cell, 2012, 24, 21-32.	6.6	79
26	Genome-Wide Characterization of Nonreference Transposons Reveals Evolutionary Propensities of Transposons in Soybean. Plant Cell, 2012, 24, 4422-4436.	6.6	51
27	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	21.4	1,893