Gozde Tutuncuoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826804/publications.pdf

Version: 2024-02-01

49 papers 1,536 citations

257101 24 h-index 39 g-index

49 all docs 49 docs citations

49 times ranked 2186 citing authors

#	Article	IF	CITATIONS
1	Template-Assisted Scalable Nanowire Networks. Nano Letters, 2018, 18, 2666-2671.	4.5	92
2	Ill–V nanowire arrays: growth and light interaction. Nanotechnology, 2014, 25, 014015.	1.3	87
3	Vectorial scanning force microscopy using a nanowire sensor. Nature Nanotechnology, 2017, 12, 150-155.	15.6	83
4	Plasmonic Waveguide-Integrated Nanowire Laser. Nano Letters, 2017, 17, 747-754.	4.5	80
5	Modulation Doping of GaAs/AlGaAs Core–Shell Nanowires With Effective Defect Passivation and High Electron Mobility. Nano Letters, 2015, 15, 1336-1342.	4.5	78
6	Photonic–Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas. Nano Letters, 2014, 14, 2271-2278.	4. 5	73
7	Wetting of Ga on SiO _{<i>x</i>} and Its Impact on GaAs Nanowire Growth. Crystal Growth and Design, 2015, 15, 3105-3109.	1.4	65
8	Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. ACS Nano, 2016, 10, 4219-4227.	7.3	62
9	Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires. Nano Letters, 2018, 18, 49-57.	4.5	62
10	Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology, 2015, 26, 105603.	1.3	57
11	From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires. Nano Letters, 2016, 16, 637-643.	4.5	56
12	Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon. Nano Letters, 2017, 17, 4101-4108.	4. 5	47
13	Towards defect-free 1-D GaAs/AlGaAs heterostructures based on GaAs nanomembranes. Nanoscale, 2015, 7, 19453-19460.	2.8	46
14	Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature. Journal of Crystal Growth, 2014, 404, 246-255.	0.7	44
15	Hybrid Semiconductor Nanowire–Metallic Yagi-Uda Antennas. Nano Letters, 2015, 15, 4889-4895.	4. 5	39
16	Impact of the Ga Droplet Wetting, Morphology, and Pinholes on the Orientation of GaAs Nanowires. Crystal Growth and Design, 2016, 16, 5781-5786.	1.4	38
17	High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga. Nano Letters, 2015, 15, 2869-2874.	4.5	34
18	Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy, 2017, 41, 566-572.	8.2	34

#	Article	IF	CITATIONS
19	Imaging Stray Magnetic Field of Individual Ferromagnetic Nanotubes. Nano Letters, 2018, 18, 964-970.	4.5	32
20	Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality. Nanoscale, 2018, 10, 17080-17091.	2.8	31
21	Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment. Physical Review Materials, $2018, 2, \ldots$	0.9	31
22	Anisotropic magnetoresistance of individual CoFeB and Ni nanotubes with values of up to 1.4% at room temperature. APL Materials, $2014,2,.$	2.2	29
23	Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy. ACS Photonics, 2017, 4, 2235-2241.	3.2	28
24	Time-Resolved Nonlinear Coupling between Orthogonal Flexural Modes of a Pristine GaAs Nanowire. Nano Letters, 2016, 16, 926-931.	4. 5	26
25	Characterization and analysis of InAs/p–Si heterojunction nanowire-based solar cell. Journal Physics D: Applied Physics, 2014, 47, 394017.	1.3	25
26	Imaging magnetic vortex configurations in ferromagnetic nanotubes. Physical Review B, 2017, 96, .	1.1	25
27	Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets. Nanotechnology, 2017, 28, 054001.	1.3	24
28	Observation of end-vortex nucleation in individual ferromagnetic nanotubes. Physical Review B, 2018, 97, .	1.1	22
29	Magnetization reversal of an individual exchange-biased permalloy nanotube. Physical Review B, 2015, 92, .	1.1	21
30	Revealing Large-Scale Homogeneity and Trace Impurity Sensitivity of GaAs Nanoscale Membranes. Nano Letters, 2017, 17, 2979-2984.	4.5	18
31	Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires. Nanoscale, 2017, 9, 7839-7846.	2.8	15
32	Quantum dots in the GaAs/Al $<$ i $>x<$ /i $>$ Ga1â $^3<$ i $>x<$ /i $>$ As core-shell nanowires: Statistical occurrence as a function of the shell thickness. Applied Physics Letters, 2015, 107, .	1.5	13
33	Coherent Two-Mode Dynamics of a Nanowire Force Sensor. Physical Review Applied, 2018, 9, .	1.5	13
34	GaAs nanoscale membranes: prospects for seamless integration of Ill–Vs on silicon. Nanoscale, 2020, 12, 815-824.	2.8	12
35	Segregation scheme of indium in AlGalnAs nanowire shells. Physical Review Materials, 2019, 3, .	0.9	11
36	Nonlinear motion and mechanical mixing in as-grown GaAs nanowires. Applied Physics Letters, 2014, 105, 173111.	1.5	10

#	Article	IF	Citations
37	Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots. Nano Letters, 2018, 18, 2393-2401.	4.5	10
38	3D Ordering at the Liquid–Solid Polar Interface of Nanowires. Advanced Materials, 2020, 32, e2001030.	11.1	10
39	Nonstoichiometric Low-Temperature Grown GaAs Nanowires. Nano Letters, 2015, 15, 6440-6445.	4.5	9
40	Questioning liquid droplet stability on nanowire tips: from theory to experiment. Nanotechnology, 2019, 30, 285604.	1.3	9
41	Molecular beam epitaxy of InAs nanowires in SiO2nanotube templates: challenges and prospects for integration of Ill–Vs on Si. Nanotechnology, 2016, 27, 455601.	1.3	7
42	Tuning the response of non-allowed Raman modes in GaAs nanowires. Journal Physics D: Applied Physics, 2016, 49, 095103.	1.3	7
43	Bottom-up engineering of InAs at the nanoscale: From V-shaped nanomembranes to nanowires. Journal of Crystal Growth, 2015, 420, 47-56.	0.7	5
44	Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy. Journal of Applied Physics, 2014, 116, 184303.	1.1	4
45	Tilting Catalyst-Free InAs Nanowires by 3D-Twinning and Unusual Growth Directions. Crystal Growth and Design, 2017, 17, 3596-3605.	1.4	4
46	Tuning adatom mobility and nanoscale segregation by twin formation and polytypism. Nanotechnology, 2019, 30, 054006.	1.3	3
47	Reducing Conductivity Variability in Si Nanowires via Surface Passivation for Nanoelectronics. ACS Applied Nano Materials, 2021, 4, 3852-3860.	2.4	3
48	Unveiling Temperature-Dependent Scattering Mechanisms in Semiconductor Nanowires Using Optical-Pump Terahertz-Probe Spectroscopy. , 2019, , .		2
49	Understanding and exploiting optical properties in semiconductor nanowires for solar energy conversion., 2016,,.		0