Makiko Suwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826574/publications.pdf Version: 2024-02-01

MAKIKO SUMA

#	Article	IF	CITATIONS
1	The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1036-1045.	1.2	592
2	Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones. PLoS Biology, 2004, 2, e162.	2.6	290
3	Structural Basis for a Broad But Selective Ligand Spectrum of a Mouse Olfactory Receptor: Mapping the Odorant-Binding Site. Journal of Neuroscience, 2005, 25, 1806-1815.	1.7	278
4	Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli. Neuron, 2006, 52, 857-869.	3.8	172
5	Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nature Immunology, 2005, 6, 827-835.	7.0	103
6	A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics, 2005, 21, 961-968.	1.8	103
7	Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene, 2005, 364, 53-62.	1.0	92
8	Neural network-based prediction of transmembrane β-strand segments in outer membrane proteins. Journal of Computational Chemistry, 2004, 25, 762-767.	1.5	76
9	TMBETADISC-RBF: Discrimination of -barrel membrane proteins using RBF networks and PSSM profiles. Computational Biology and Chemistry, 2008, 32, 227-231.	1.1	76
10	Discrimination of outer membrane proteins using support vector machines. Bioinformatics, 2005, 21, 4223-4229.	1.8	75
11	The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Research, 2007, 36, D793-D799.	6.5	57
12	Discrimination of outer membrane proteins using machine learning algorithms. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1031-1037.	1.5	53
13	Application of residue distribution along the sequence for discriminating outer membrane proteins. Computational Biology and Chemistry, 2005, 29, 135-142.	1.1	50
14	Denaturation of bacteriorhodopsin by organic solvents. Biophysical Chemistry, 1988, 30, 69-79.	1.5	48
15	TMBETA-NET: discrimination and prediction of membrane spanning Â-strands in outer membrane proteins. Nucleic Acids Research, 2005, 33, W164-W167.	6.5	48
16	GRIFFIN: a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model. Nucleic Acids Research, 2005, 33, W148-W153.	6.5	48
17	Combining sensitive database searches with multiple intermediates to detect distant homologues. Protein Engineering, Design and Selection, 1999, 12, 95-100.	1.0	46
18	HUNT: launch of a full-length cDNA database from the Helix Research Institute. Nucleic Acids Research, 2001, 29, 185-188.	6.5	42

ΜΑΚΙΚΟ SUWA

#	Article	IF	CITATIONS
19	Influence of cation–Ĩ€ interactions in protein–DNA complexes. Polymer, 2004, 45, 633-639.	1.8	39
20	Automated classification of alternative splicing and transcriptional initiation and construction of visual database of classified patterns. Bioinformatics, 2006, 22, 1211-1216.	1.8	33
21	Structural analysis of residues involving cation-ï€ interactions in different folding types of membrane proteins. International Journal of Biological Macromolecules, 2005, 35, 55-62.	3.6	30
22	Genome analysis: Assigning protein coding regions to threeâ€dimensional structures. Protein Science, 1999, 8, 771-777.	3.1	30
23	TMFunction: database for functional residues in membrane proteins. Nucleic Acids Research, 2009, 37, D201-D204.	6.5	29
24	Large-scale analysis of human alternative protein isoforms: pattern classification and correlation with subcellular localization signals. Nucleic Acids Research, 2005, 33, 2355-2363.	6.5	26
25	Influence of amino acid properties for discriminating outer membrane proteins at better accuracy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1493-1497.	1.1	26
26	A Continuum theory for the prediction of lateral and rotational positioning of α-helices in membrane proteins: Bacteriorhodopsin. Proteins: Structure, Function and Bioinformatics, 1995, 22, 363-377.	1.5	25
27	Interaction stabilizing tertiary structure of bacteriorhodopsin studied by denaturation experiments. Proteins: Structure, Function and Bioinformatics, 1995, 22, 350-362.	1.5	24
28	Automatic gene collection system for genome-scale overview of G-protein coupled receptors in Eukaryotes. Gene, 2005, 364, 63-73.	1.0	24
29	A theoretical method for distinguishing between soluble and membrane proteins. Biophysical Chemistry, 1989, 34, 69-77.	1.5	21
30	Using the CATH domain database to assign structures and functions to the genome sequences. Biochemical Society Transactions, 2000, 28, 269-275.	1.6	21
31	Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences. Pharmaceuticals, 2011, 4, 652-664.	1.7	20
32	Role of non-covalent interactions for determining the folding rate of two-state proteins. Biophysical Chemistry, 2004, 107, 263-272.	1.5	19
33	Variation of amino acid properties in all-β globular and outer membrane protein structures. International Journal of Biological Macromolecules, 2003, 32, 93-98.	3.6	17
34	Statistical analysis and prediction of functional residues effective for GPCR-G-protein coupling selectivity. Protein Engineering, Design and Selection, 2006, 19, 277-283.	1.0	17
35	TMBETA-GENOME: database for annotated Â-barrel membrane proteins in genomic sequences. Nucleic Acids Research, 2007, 35, D314-D316.	6.5	17
36	Current Developments on β-Barrel Membrane Proteins: Sequence and Structure Analysis, Discrimination and Prediction. Current Protein and Peptide Science, 2007, 8, 580-599.	0.7	14

ΜΑΚΙΚΟ SUWA

#	Article	IF	CITATIONS
37	Development of a Machine Learning Method to Predict Membrane Protein-Ligand Binding Residues Using Basic Sequence Information. Advances in Bioinformatics, 2015, 2015, 1-7.	5.7	14
38	A triangle lattice model that predicts transmembrane helix configuration using a polar jigsaw puzzle. Protein Engineering, Design and Selection, 2000, 13, 771-778.	1.0	13
39	Identification of a binding element for the cytoplasmic regulator FROUNT in the membrane-proximal C-terminal region of chemokine receptors CCR2 and CCR5. Biochemical Journal, 2014, 457, 313-322.	1.7	13
40	Structural Elements of the Signal Propagation Pathway in Squid Rhodopsin and Bovine Rhodopsin. Journal of Physical Chemistry B, 2011, 115, 6172-6179.	1.2	9
41	TMB Finding Pipeline:  Novel Approach for Detecting β-Barrel Membrane Proteins in Genomic Sequences. Journal of Chemical Information and Modeling, 2007, 47, 2456-2461.	2.5	8
42	Discrimination of Golgi Type II Membrane Proteins Based on Their Hydropathy Profiles and the Amino Acid Propensities of Their Transmembrane Regions. Bioscience, Biotechnology and Biochemistry, 2011, 75, 82-88.	0.6	6
43	Computational Overview of GPCR Gene Universe to Support Reverse Chemical Genomics Study. Methods in Molecular Biology, 2009, 577, 41-54.	0.4	6
44	SEVENS: a database for comprehensive GPCR genes obtained from genomes. Biophysics and Physicobiology, 2018, 15, 104-110.	0.5	5
45	Bioinformatics Tools for Predicting GPCR Gene Functions. Advances in Experimental Medicine and Biology, 2014, 796, 205-224.	0.8	5
46	Characterization of Transmembrane Helices by a Probe Helix Method of Molecular Energy Calculation. Japanese Journal of Applied Physics, 1992, 31, 951-956.	0.8	4
47	Neural network based prediction of protein structure and Function: Comparison with other machine learning methods. , 2008, , .		4
48	Dynamics of bovine opsin bound to G-protein fragments. Journal of Structural Biology, 2014, 188, 79-86.	1.3	4
49	Ca2+-ATPase Molecules as a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum. International Journal of Molecular Sciences, 2021, 22, 2624.	1.8	4
50	A bioinformatics strategy to produce a cyclically developing project structure. Synthesiology, 2010, 3, 1-12.	0.2	4
51	Theoretical Analysis of Amino Acid Sequence of Human Dystrophin. Biochemical and Biophysical Research Communications, 1993, 191, 782-789.	1.0	3
52	GENIUS II: a high-throughput database system for linking ORFs in complete genomes to known protein three-dimensional structures. Bioinformatics, 2004, 20, 596-598.	1.8	3
53	Highly Selective Tuning of a Silkworm Olfactory Receptor to a Key Mulberry Leaf Volatile. Current Biology, 2011, 21, 623.	1.8	3
54	FOLDING ELASTIC TRANSMEMBRANE HELICES TO FIT IN A LOW-RESOLUTION IMAGE BY ELECTRON MICROSCOPY. Journal of Bioinformatics and Computational Biology, 2011, 09, 37-50.	0.3	3

ΜΑΚΙΚΟ SUWA

Article	IF	CITATIONS
Identification of Glycosyltransferases Focusing on Golgi Transmembrane Region. Trends in Glycoscience and Glycotechnology, 2007, 19, 41-47.	0.0	3
Elongation and Contraction of Scallop Sarcoplasmic Reticulum (SR): ATP Stabilizes Ca2+-ATPase Crystalline Array Elongation of SR Vesicles. International Journal of Molecular Sciences, 2022, 23, 3311.	1.8	1
A computer system for predicting membrane protein structure. The Protein Journal, 1992, 11, 390-391.	1.1	0
A novel measure characterized by a polar energy surface approximation for recognition and classification of transmembrane protein structures. Proteins: Structure, Function and Bioinformatics, 2000, 41, 504-517.	1.5	0
1P264 Comparative overview of GPCR Universe in 28 eukaryotes(Bioinformatics-structural, functional,) Tj ETQq1	1 0.78431	.4 rgBT /Ove
2P-209 Molecular Dynamics Simulation of Squid Rhodopsin and Bovine Opsin(Photobiology:Vision) Tj ETQq0 0 0 2009, 49, S140.	rgBT /Over 0.0	rlock 10 Tf 5 0
1P297 Structural Classification of G-protein coupled receptors(GPCR)based on inner polarity environment of the proteins. (Bioinformatics:Structural genomics,The 48th Annual Meeting of the) Tj ETQq1 1 0.7	8 43 01.4 rgl	376/Overlock
1P478 Sequence and structure features of GPCRs, which are effective to determine the GPCR and G-protein binding selectivity(23. Bioinformatics, genomics and proteomics (I),Poster) Tj ETQq0 0 0 rgBT /Overlock	2 100 of 50	4507 Td (Sess
The New Paradigm of the GPCR Analysis: The Knowledge that We Obtained from Comparison of New Structures. Seibutsu Butsuri, 2008, 48, 335-337.	0.0	0
	ARTICLE Identification of Glycosyltransferases Focusing on Golgi Transmembrane Region. Trends in Glycoscience and Glycotechnology, 2007, 19, 41-47. Elongation and Contraction of Scallop Sarcoplasmic Reticulum (SR): ATP Stabilizes Ca2+.ATPase Crystalline Array Elongation of SR Vesicles. International Journal of Molecular Sciences, 2022, 23, 3311. A computer system for predicting membrane protein structure. The Protein Journal, 1992, 11, 390-391. A novel measure characterized by a polar energy surface approximation for recognition and classification of transmembrane protein structures. Proteins: Structure, Function and Bioinformatics, 2000, 41, 504-517. IP264 Comparative overview of GPCR Universe in 28 eukaryotes(Bioinformatics-structural, functional.) TJ ETQq0 00 2009, 49, S140. IP277 Structural Classification of G-protein coupled receptors(GPCR)based on Inner polarity environment of the proteins.(Bioinformatics:Structural genomics, The 48th Annual Meeting of the) Tj ETQq1 10.7 IP478 Sequence and structure features of GPCRs, which are effective to determine the GPCR and C-protein binding selectivity(23. Bioinformatics, genomics and proteomics (I),Poster) Tj ETQq0 0 0 rg8T /Overlock The New Paradigm of the CPCR Analysis: The Knowledge that We Obtained from Comparison of New	ARTICLEIFIdentification of Clycosyltransferases Focusing on Colgi Transmembrane Region. Trends in Clycoscience and Clycotechnology, 2007, 19, 41-47.o.oElongation and Contraction of Scallop Sarcoplasmic Reticulum (SR): ATP Stabilizes Ca2+ATPase Crystalline Array Elongation of SR Vesicles. International Journal of Molecular Sciences, 2022, 23, 3311.1.8A computer system for predicting membrane protein structure. The Protein Journal, 1992, 11, 390-391.1.1A novel measure characterized by a polar energy surface approximation for recognition and classification of transmembrane protein structures. Proteins: Structure, Function and Bioinformatics, 2000, 41, 504-517.1.5IP264 Comparative overview of CPCR Universe in 28 eukaryotes(Bioinformatics-structural, functional,) TJ ETQq0 0 or gBT /Over 0.00.02009, 49, S140.0.0IP297 Structural Classification of C-protein coupled receptors(CPCR)based on Inner polarity environment of the proteins.(Bioinformatics, genomics, The 48th Annual Meeting of the) TJ ETQq1 1.0.784314 rgfIP478 Sequence and structure features of CPCRs, which are effective to determine the CPCR and C-protein binding selectivity(23. Bioinformatics; genomics and proteomics (I),Poster) TJ ETQq0 0 or gBT /Overlock Ib0T 50The New Paradigm of the CPCCR Analysis: The Knowledge that We Obtained from Comparison of New Structures. Selbutsu Butsuri, 2008, 48, 335-337.0.0

64 A computer system for predicting membrane protein structure. , 1993, , 1331-1334.