Wei Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826310/publications.pdf

Version: 2024-02-01

39 papers	2,558 citations	18 h-index	36 g-index
39	39	39	3737
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accelerated Hydrogen "Spillâ€Over―Enhances Anode Performance of Tensile Strained Pdâ€Based Fuel Cell Electrocatalysts. Small Methods, 2022, 6, e2101328.		4
2	Coalescence and shape oscillation of Au nanoparticles in CO ₂ hydrogenation to methanol. Nanoscale, 2021, 13, 18218-18225.	5 . 6	6
3	Highâ€Loading Pt Singleâ€Atom Catalyst on CeO 2 â€Modified Diatomite Support. Chemistry - an Asian Journal, 2021, 16, 2622-2625.	3.3	6
4	Strain evolution in nanoporous gold during catalytic CH4 pyrolysis by in situ gas-phase transmission electron microscopy. Scripta Materialia, 2021, 204, 114146.	5.2	2
5	Synthesis of ultrathin Co2AlO4 nanosheets with oxygen vacancies for enhanced electrocatalytic oxygen evolution. Science China Materials, 2020, 63, 91-99.	6.3	16
6	Visualization of Shallowâ€Groove Expansion of Au(111) Facet under Methane Pyrolysis. Advanced Materials Interfaces, 2020, 7, 2001245.	3.7	1
7	Anomalous detwinning in constrained Cu nanoparticles. Nanoscale, 2020, 12, 14831-14837.	5.6	1
8	Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nature Communications, 2020, 11, 1263.	12.8	198
9	Performance enhanced high-nickel lithium metal batteries through stable cathode and anode electrolyte interfaces. Sustainable Energy and Fuels, 2020, 4, 2875-2883.	4.9	2
10	Intermediate Structures of Nucleation and Growth during Solidification of CuO Constrained by Graphene. Advanced Materials Interfaces, 2020, 7, 1902047.	3.7	3
11	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie, 2020, 132, 11922-11927.	2.0	46
12	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie - International Edition, 2020, 59, 11824-11829.	13.8	309
13	Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis. Nature Communications, 2020, 11, 1919.	12.8	65
14	Monolayer goldene intercalated in graphene layers. Applied Physics Letters, 2020, 117, .	3.3	4
15	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, 18559-18564.	2.0	20
16	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, 18388-18393.	13.8	69
17	Upraising the O 2p Orbital by Integrating Ni with MoO ₂ for Accelerating Hydrogen Evolution Kinetics. ACS Catalysis, 2019, 9, 2275-2285.	11.2	165
18	Nanoporous Cu@Cu ₂ O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. Journal of Materials Chemistry A, 2019, 7, 15691-15697.	10.3	66

#	Article	IF	CITATIONS
19	Atomic-scale selectivity of hydrogen for storage sites in Pd nanoparticles at atmospheric pressure. Nanoscale, 2019, 11, 10198-10202.	5.6	7
20	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. Journal of Materials Chemistry A, 2019, 7, 15575-15579.	10.3	34
21	Simple physical preparation of single copper atoms on amorphous carbon <i>via</i> Coulomb explosion. Nanoscale, 2019, 11, 7595-7599.	5 . 6	9
22	Frontispiz: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, .		0
23	Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nature Communications, 2019, 10, 5181.		398
24	Frontispiece: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
25	Reduction of electrical conductivity in Ag nanowires induced by low-energy electron beam irradiation. Journal of Physics and Chemistry of Solids, 2019, 124, 89-93.	4.0	5
26	Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Fewâ€Layer Cuâ€Znln ₂ S ₄ . Advanced Functional Materials, 2019, 29, 1807013.	14.9	165
27	Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 2019, 10, 234.	12.8	452
28	Ultrathin Ag Nanowires Electrode for Electrochemical Syngas Production from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 7687-7694.	6.7	44
29	Atomic origins of high electrochemical CO ₂ reduction efficiency on nanoporous gold. Nanoscale, 2018, 10, 8372-8376.	5.6	46
30	Self-Supported Hierarchical Nanostructured NiFe-LDH and Cu ₃ P Weaving Mesh Electrodes for Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 380-388.	6.7	82
31	Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy, 2018, 44, 371-377.	16.0	138
32	Bimetal metal-organic frameworks derived Co0.4Fe0.28P and Co0.37Fe0.26S nanocubes for enhanced oxygen evolution reaction. Electrochimica Acta, 2018, 263, 576-584.	5.2	35
33	Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO ₂ RR to formate. Journal of Materials Chemistry A, 2018, 6, 18960-18966.		46
34	Exponential surface melting of Cu nanoparticles observed by in-situ TEM. Materials Characterization, 2018, 145, 246-249.	4.4	6
35	Rechargeable Al–CO ₂ Batteries for Reversible Utilization of CO ₂ . Advanced Materials, 2018, 30, e1801152.	21.0	96
36	Multilayer-by-multilayer surface melting of Cu(200). Physical Review B, 2018, 98, .	3.2	0

#	Article	IF	CITATIONS
37	Promotion effect of secondary phase particles on grain refinement of deformed Mg–Y–Nd–Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 247-251.	5.6	3
38	Formed kink band and long-period stacking structure relaxed stress induced by {10–12} twin in deformed magnesium alloy. Materials Characterization, 2015, 103, 170-174.	4.4	8
39	Complete surface reconstruction of nanoporous gold during CH ₄ pyrolysis. Nanoscale, 0, , .	5.6	0