
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826140/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fabrication with Semiconductor Packaging Technologies and Characterization of a Large cale<br>Flexible Thermoelectric Module. Advanced Materials Technologies, 2019, 4, 1800556.                                             | 3.0 | 26        |
| 2  | Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy.<br>Materials Today: Proceedings, 2019, 8, 625-631.                                                                             | 0.9 | 3         |
| 3  | Tuning diffusion paths in shaped ceria nanocrystals. CrystEngComm, 2019, 21, 4025-4029.                                                                                                                                      | 1.3 | 7         |
| 4  | Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC)<br>electro-chemo-mechanical properties. Acta Materialia, 2019, 174, 53-60.                                                                        | 3.8 | 34        |
| 5  | Formation mechanism and thermoelectric properties of CaMnO3 thin films synthesized by annealing of Ca0.5Mn0.5O films. Journal of Materials Science, 2019, 54, 8482-8491.                                                     | 1.7 | 11        |
| 6  | P-type Al-doped Cr-deficient CrN thin films for thermoelectrics. Applied Physics Express, 2018, 11, 051003.                                                                                                                  | 1.1 | 21        |
| 7  | Tuning the thermoelectric properties by manipulating copper in Cu2SnSe3 system. Journal of Alloys and Compounds, 2018, 748, 273-280.                                                                                         | 2.8 | 13        |
| 8  | In Situ TEM Studies of Nanostructured Thermoelectric Materials: An Application to Mgâ€Đoped<br>Zn <sub>4</sub> Sb <sub>3</sub> Alloy. ChemPhysChem, 2018, 19, 108-115.                                                       | 1.0 | 7         |
| 9  | Efficient p-n junction-based thermoelectric generator that can operate at extreme temperature conditions. Journal Physics D: Applied Physics, 2018, 51, 014005.                                                              | 1.3 | 20        |
| 10 | Effect of ion-implantation-induced defects and Mg dopants on the thermoelectric properties of ScN.<br>Physical Review B, 2018, 98, .                                                                                         | 1.1 | 31        |
| 11 | Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle<br>Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceria. Ceramics,<br>2018, 1, 246-260. | 1.0 | 3         |
| 12 | Experimental Determination of the Formation Enthalpy of Calcium Cobaltate from Sol–Gel<br>Precursors. Journal of Electronic Materials, 2017, 46, 1413-1417.                                                                  | 1.0 | 1         |
| 13 | Microstructure and chemical data of the thermoelectric ZnSb material after joining to metallic electrodes and heat treatment. Data in Brief, 2017, 15, 97-101.                                                               | 0.5 | 1         |
| 14 | Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying. Journal of<br>Applied Physics, 2017, 122, 025116.                                                                                   | 1.1 | 28        |
| 15 | Solder free joining as a highly effective method for making contact between thermoelectric materials<br>and metallic electrodes. Materials Today Energy, 2017, 5, 305-311.                                                   | 2.5 | 5         |
| 16 | Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth. Physical Review B, 2017, 96, .                                                                  | 1.1 | 30        |
| 17 | In Operando Study of Highâ€Performance Thermoelectric Materials for Power Generation: A Case Study<br>of βâ€Zn <sub>4</sub> sb <sub>3</sub> . Advanced Electronic Materials, 2017, 3, 1700223.                               | 2.6 | 17        |
| 18 | Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material. Journal of<br>Materials Chemistry A, 2016, 4, 12221-12231.                                                                           | 5.2 | 32        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Experimental and theoretical investigation of Cr1-xScxN solid solutions for thermoelectrics. Journal of Applied Physics, 2016, 120, .                                                                    | 1.1 | 33        |
| 20 | Promising bulk nanostructured Cu <sub>2</sub> Se thermoelectrics via high throughput and rapid chemical synthesis. RSC Advances, 2016, 6, 111457-111464.                                                 | 1.7 | 38        |
| 21 | Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride. RSC Advances, 2016, 6, 59565-59573.                                             | 1.7 | 33        |
| 22 | On the chemical synthesis route to bulk-scale skutterudite materials. Ceramics International, 2016, 42, 5312-5318.                                                                                       | 2.3 | 1         |
| 23 | On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on<br>Half-Heusler Alloys. Journal of Electronic Materials, 2016, 45, 594-601.                                      | 1.0 | 25        |
| 24 | Segmented Thermoelectric Oxideâ€Based Module for Highâ€Temperature Waste Heat Harvesting. Energy<br>Technology, 2015, 3, 1143-1151.                                                                      | 1.8 | 29        |
| 25 | Mechanism of Formation of the Thermoelectric Layered Cobaltate<br>Ca <sub>3</sub> Co <sub>4</sub> O <sub>9</sub> by Annealing of CaO–CoO Thin Films. Advanced<br>Electronic Materials, 2015, 1, 1400022. | 2.6 | 31        |
| 26 | Effects of Yttrium and Iron co-doping on the high temperature thermoelectric properties of Ca3Co4O9+δ. Journal of Alloys and Compounds, 2015, 638, 127-132.                                              | 2.8 | 20        |
| 27 | Segmentation of lowâ€cost high efficiency oxideâ€based thermoelectric materials. Physica Status Solidi<br>(A) Applications and Materials Science, 2015, 212, 767-774.                                    | 0.8 | 25        |
| 28 | High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energy Conversion and Management, 2015, 99, 20-27.                                                             | 4.4 | 23        |
| 29 | High-temperature stability of thermoelectric Ca3Co4O9 thin films. Applied Physics Letters, 2015, 106, 143903.                                                                                            | 1.5 | 10        |
| 30 | Ambient effects on the electrical conductivity of carbon nanotubes. Carbon, 2015, 95, 347-353.                                                                                                           | 5.4 | 27        |
| 31 | Effects of conducting oxide barrier layers on the stability of Crofer® 22 APU/Ca3Co4O9 interfaces.<br>Journal of Materials Research, 2014, 29, 2891-2897.                                                | 1.2 | 2         |
| 32 | Towards high efficiency segmented thermoelectric unicouples. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 9-17.                                                              | 0.8 | 80        |
| 33 | High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering. Journal of the European Ceramic Society, 2014, 34, 925-931.                            | 2.8 | 80        |
| 34 | Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide<br>Ca3Co4O9. Journal of Alloys and Compounds, 2014, 582, 827-833.                                           | 2.8 | 22        |
| 35 | Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3.<br>Journal of Alloys and Compounds, 2014, 612, 293-300.                                                  | 2.8 | 22        |
| 36 | Effects of morphology on the thermoelectric properties of Al-doped ZnO. RSC Advances, 2014, 4, 12353.                                                                                                    | 1.7 | 68        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                          | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 37 | Kinetics, Stability, and Thermal Contact Resistance of Nickel–Ca3Co4O9 Interfaces Formed by Spark<br>Plasma Sintering. Journal of Electronic Materials, 2013, 42, 1661-1668.                                                                                                                                                                                     | 1.0         | 6         |
| 38 | Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+l´. Journal of Electronic Materials, 2013, 42, 2134-2142.                                                                                                                                                                                                | 1.0         | 16        |
| 39 | High-temperature thermoelectric properties of Ca0.9Y0.1Mn1â^'x Fe x O3 (0Ââ‰ÂxÂâ‰Â0.25). Journal of Mater<br>Science, 2013, 48, 2817-2822.                                                                                                                                                                                                                       | ials<br>1.7 | 12        |
| 40 | The influence of α- and γ-Al2O3 phases on the thermoelectric properties of Al-doped ZnO. Journal of Alloys and Compounds, 2013, 555, 291-296.                                                                                                                                                                                                                    | 2.8         | 45        |
| 41 | The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO. Journal of Electronic Materials, 2013, 42, 1573-1581.                                                                                                                                                                           | 1.0         | 27        |
| 42 | Thermoelectric properties and microstructure of modified novel complex cobalt oxides Sr3RECo4O10.5 (RE = Y, Gd). , 2012, , .                                                                                                                                                                                                                                     |             | 1         |
| 43 | Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf or Bi. AIP Conference<br>Proceedings, 2012, , .<br>Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti <mml:math< td=""><td>0.3</td><td>14</td></mml:math<>                                                                                                        | 0.3         | 14        |
| 44 | xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow<br>/&gt;<mml:mn>3</mml:mn></mml:mrow<br></mml:msub> SiC <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mn>2</mml:mn></mml:mrow<br></mml:msub>determined by polarized x-ray spectroscopy and</mml:math<br> | 1.1         | 31        |
| 45 | Seebeck measurements. Physical Review B, 2012, 85, .<br>X-ray absorption spectroscopy studies of Ca2.9Ln0.1Co4O9+δ (Ln=Ca, Dy, Ho, Er and Lu). Journal of<br>Alloys and Compounds, 2012, 529, 8-11.                                                                                                                                                              | 2.8         | 3         |
| 46 | Microstructure and Thermoelectric Properties of Screen-Printed Thick Films of Misfit-Layered Cobalt<br>Oxides with Ag Addition. Journal of Electronic Materials, 2012, 41, 1280-1285.                                                                                                                                                                            | 1.0         | 13        |
| 47 | Structure and thermoelectric properties of Ca2â^'xSrxFeMoO6 (0â‰ <b>¤</b> â‰ <b>9</b> .3) double-perovskite oxides.<br>Materials Chemistry and Physics, 2012, 133, 630-634.                                                                                                                                                                                      | 2.0         | 27        |
| 48 | Lowâ€Cost Highâ€Performance Zinc Antimonide Thin Films for Thermoelectric Applications. Advanced<br>Materials, 2012, 24, 1693-1696.                                                                                                                                                                                                                              | 11.1        | 60        |
| 49 | High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ. Journal of Alloys<br>and Compounds, 2011, 509, 977-981.                                                                                                                                                                                                                          | 2.8         | 101       |
| 50 | Structural, magnetic and magnetocaloric properties of Heusler alloys Ni50Mn38Sb12 with boron<br>addition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011,<br>176, 1322-1325.                                                                                                                                           | 1.7         | 20        |
| 51 | Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ. Journal of Power Sources, 2011, 196, 10606-10610.                                                                                                                                                                                                                    | 4.0         | 26        |
| 52 | Thermoelectric Properties of SnO2 Ceramics Doped with Sb and Zn. Journal of Electronic Materials, 2011, 40, 674-677.                                                                                                                                                                                                                                             | 1.0         | 31        |
| 53 | High-Temperature Thermoelectric and Microstructural Characteristics of Cobalt-Based Oxides with Ga Substituted on the Co-Site. Journal of Electronic Materials, 2011, 40, 716-722.                                                                                                                                                                               | 1.0         | 25        |
| 54 | Improved Thermoelectric Characteristics of Si-Doped Misfit-Layered Cobaltite. Journal of Electronic<br>Materials, 2011, 40, 1042-1045.                                                                                                                                                                                                                           | 1.0         | 28        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Enhancement of the Thermoelectric Performance of pâ€Type Layered Oxide<br>Ca <sub>3</sub> Co <sub>4</sub> O <sub>9+</sub> <sub><i>î´</i></sub> Through Heavy Doping and<br>Metallic Nanoinclusions. Advanced Materials, 2011, 23, 2484-2490. | 11.1 | 249       |
| 56 | Anomalously high thermoelectric power factor in epitaxial ScN thin films. Applied Physics Letters, 2011, 99, .                                                                                                                               | 1.5  | 84        |
| 57 | The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate. Materials, 2010, 3, 318-328.                                                                                                                       | 1.3  | 56        |
| 58 | Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered<br>Ca3Co4â^'xGaxO9+δ (x=0, 0.05, 0.1, and 0.2). Journal of Alloys and Compounds, 2010, 491, 53-56.                                                 | 2.8  | 97        |
| 59 | High thermoelectric performance of reduced lanthanide molybdenum oxides densified by spark plasma sintering. Journal of Alloys and Compounds, 2010, 500, 22-25.                                                                              | 2.8  | 12        |
| 60 | Structural and Magnetic Phase Transitions of Shape-Memory Ni50Mn25+xGa25-x Alloys with Excess<br>Mn. Journal of the Korean Physical Society, 2008, 52, 1478-1482.                                                                            | 0.3  | 2         |
| 61 | Thermoelectric properties and local electronic structure of rare earth-doped Ca3Co2O6. , 2006, , .                                                                                                                                           |      | 1         |
| 62 | Power factors of late rare earth-doped Ca3Co2O6 oxides. Solid State Communications, 2006, 139, 232-234.                                                                                                                                      | 0.9  | 16        |
| 63 | Temperature dependence of magnetic properties in Ni-Mn-Ga shape memory alloys. Physica Status Solidi<br>C: Current Topics in Solid State Physics, 2004, 1, 3579-3582.                                                                        | 0.8  | 2         |
| 64 | Magnetism and magnetocaloric effect in La1â´'yNdy(Fe0.88Si0.12)13 compounds. Journal of Magnetism<br>and Magnetic Materials, 2003, 262, 427-431.                                                                                             | 1.0  | 60        |
| 65 | Electrical resistance study of Tb5(SixGe1â^x)4 compounds. Physica B: Condensed Matter, 2003, 327, 324-327.                                                                                                                                   | 1.3  | 4         |
| 66 | Magnetic properties and magnetocaloric effect of Tb5(SixGe1â^'x)4 compounds. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 841-843.                                                                                            | 1.0  | 22        |