Thomas C Jhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking drug and food addiction via compulsive appetite. British Journal of Pharmacology, 2022, 179, 2589-2609.	5.4	5
2	Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacology, 2021, 46, 1399-1406.	5.4	12
3	Entopeduncular Nucleus Projections to the Lateral Habenula Contribute to Cocaine Avoidance. Journal of Neuroscience, 2021, 41, 298-306.	3.6	13
4	Synaptic Adaptations at the Rostromedial Tegmental Nucleus Underlie Individual Differences in Cocaine Avoidance Behavior. Journal of Neuroscience, 2021, 41, 4620-4630.	3.6	7
5	Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity. Molecular Psychiatry, 2021, 26, 6159-6169.	7.9	19
6	The rostromedial tegmental (RMTg) "brake―on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology, 2021, 198, 108763.	4.1	20
7	The ventrolateral periaqueductal grey updates fear via positive prediction error. European Journal of Neuroscience, 2020, 51, 866-880.	2.6	43
8	Prepronociceptin-Expressing Neurons in the Extended Amygdala Encode and Promote Rapid Arousal Responses to Motivationally Salient Stimuli. Cell Reports, 2020, 33, 108362.	6.4	45
9	Bidirectional Valence Encoding in the Ventral Pallidum. Neuron, 2020, 105, 766-768.	8.1	2
10	The Rostromedial Tegmental Nucleus: Anatomical Studies and Roles in Sleep and Substance Addictions in Rats and Mice. Nature and Science of Sleep, 2020, Volume 12, 1215-1223.	2.7	6
11	A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward. Cell, 2019, 178, 653-671.e19.	28.9	76
12	Three Rostromedial Tegmental Afferents Drive Triply Dissociable Aspects of Punishment Learning and Aversive Valence Encoding. Neuron, 2019, 104, 987-999.e4.	8.1	48
13	Inhibition of the rostromedial tegmental nucleus reverses alcohol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology, 2019, 44, 1896-1905.	5.4	26
14	Central Amygdala Prepronociceptin-Expressing Neurons Mediate Palatable Food Consumption and Reward. Neuron, 2019, 102, 1037-1052.e7.	8.1	95
15	Gene expression and neurochemical characterization of the rostromedial tegmental nucleus (RMTg) in rats and mice. Brain Structure and Function, 2019, 224, 219-238.	2.3	35
16	Bidirectional regulation of reward, punishment, and arousal by dopamine, the lateral habenula and the rostromedial tegmentum (RMTg). Current Opinion in Behavioral Sciences, 2019, 26, 90-96.	3.9	8
17	Valence-encoding in the lateral habenula arises from the entopeduncular region. ELife, 2019, 8,	6.0	34
18	Generality and opponency of rostromedial tegmental (RMTg) roles in valence processing. ELife, 2019, 8,	6.0	25

Тномаs C Jhou

#	Article	IF	CITATIONS
19	Cue-inhibited ventrolateral periaqueductal gray neurons signal fear output and threat probability in male rats. ELife, 2019, 8, .	6.0	24
20	Learning From One's Mistakes: A Dual Role for the Rostromedial Tegmental Nucleus in the Encoding and Expression of Punished Reward Seeking. Biological Psychiatry, 2017, 81, 1041-1049.	1.3	31
21	The Lateral Habenula Circuitry: Reward Processing and Cognitive Control. Journal of Neuroscience, 2016, 36, 11482-11488.	3.6	119
22	Role for the Rostromedial Tegmental Nucleus in Signaling the Aversive Properties of Alcohol. Alcoholism: Clinical and Experimental Research, 2016, 40, 1651-1661.	2.4	44
23	Efferent Pathways of the Mouse Lateral Habenula. Journal of Comparative Neurology, 2015, 523, 32-60.	1.6	124
24	Economic demand predicts addiction-like behavior and therapeutic efficacy of oxytocin in the rat. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11822-11827.	7.1	139
25	Cocaine Drives Aversive Conditioning via Delayed Activation of Dopamine-Responsive Habenular and Midbrain Pathways. Journal of Neuroscience, 2013, 33, 7501-7512.	3.6	175
26	Dopamine and antiâ€dopamine systems: polar opposite roles in behavior. FASEB Journal, 2013, 27, 80.2.	0.5	0
27	Braking Dopamine Systems: A New GABA Master Structure for Mesolimbic and Nigrostriatal Functions. Journal of Neuroscience, 2012, 32, 14094-14101.	3.6	182
28	Mapping of reinforcing and analgesic effects of the mu opioid agonist Endomorphin-1 in the ventral midbrain of the rat. Psychopharmacology, 2012, 224, 303-312.	3.1	57
29	Negative Reward Signals from the Lateral Habenula to Dopamine Neurons Are Mediated by Rostromedial Tegmental Nucleus in Primates. Journal of Neuroscience, 2011, 31, 11457-11471.	3.6	323
30	The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 2009, 513, 566-596.	1.6	391
31	The Rostromedial Tegmental Nucleus (RMTg),Âa GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses. Neuron, 2009, 61, 786-800.	8.1	547
32	Neural mechanisms of freezing and passive aversive behaviors. Journal of Comparative Neurology, 2005, 493, 111-114.	1.6	41