
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825812/publications.pdf Version: 2024-02-01

7HEN-HUA CE

#	Article	IF	CITATIONS
1	Low-cost, abundant binary sulfides as promising thermoelectric materials. Materials Today, 2016, 19, 227-239.	8.3	257
2	Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chemical Communications, 2011, 47, 12697.	2.2	203
3	Understanding of the Extremely Low Thermal Conductivity in Highâ€Performance Polycrystalline SnSe through Potassium Doping. Advanced Functional Materials, 2016, 26, 6836-6845.	7.8	201
4	ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 2013, 279, 367-373.	3.1	179
5	Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. Journal of the American Chemical Society, 2017, 139, 9714-9720.	6.6	168
6	Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. Journal of Materials Chemistry C, 2016, 4, 2047-2055.	2.7	122
7	Highâ€Performance Thermoelectricity in Nanostructured Earthâ€Abundant Copper Sulfides Bulk Materials. Advanced Energy Materials, 2016, 6, 1600607.	10.2	111
8	Highly Enhanced Thermoelectric Properties of Bi/Bi ₂ S ₃ Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 4828-4834.	4.0	107
9	Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy and Environmental Science, 2020, 13, 579-591.	15.6	101
10	Advanced electron microscopy for thermoelectric materials. Nano Energy, 2015, 13, 626-650.	8.2	80
11	Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Materialia, 2018, 143, 90-93.	2.6	77
12	Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of n‶ype Polycrystalline SnSe via Re Doping. Advanced Functional Materials, 2019, 29, 1902893.	7.8	73
13	Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Materials Chemistry and Physics, 2011, 131, 216-222.	2.0	70
14	Control of anisotropic electrical transport property of Bi2S3 thermoelectric polycrystals. Journal of Materials Chemistry, 2011, 21, 9194.	6.7	69
15	Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Applied Surface Science, 2016, 384, 272-278.	3.1	66
16	Nanostructured Bi2â^'xCuxS3 bulk materials with enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2012, 14, 4475.	1.3	60
17	Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing. Chemical Engineering Journal, 2021, 407, 126407.	6.6	59
18	Preparation by Solvothermal Synthesis, Growth Mechanism, and Photocatalytic Performance of CuS Nanopowders. European Journal of Inorganic Chemistry, 2014, 2014, 2368-2375.	1.0	56

#	Article	IF	CITATIONS
19	Enhanced thermoelectric properties of SnSe polycrystals via texture control. Physical Chemistry Chemical Physics, 2016, 18, 31821-31827.	1.3	53
20	Effect of spark plasma sintering temperature on thermoelectric properties of Bi ₂ S ₃ polycrystal. Journal of Materials Research, 2011, 26, 2711-2718.	1.2	48
21	Bottom-up processing and low temperature transport properties of polycrystalline SnSe. Journal of Solid State Chemistry, 2015, 225, 354-358.	1.4	48
22	Threeâ€Stage Interâ€Orthorhombic Evolution and High Thermoelectric Performance in Agâ€Doped Nanolaminar SnSe Polycrystals. Advanced Energy Materials, 2017, 7, 1700573.	10.2	48
23	A T-type method for characterization of the thermoelectric performance of an individual free-standing single crystal Bi ₂ 3nanowire. Nanoscale, 2016, 8, 2704-2710.	2.8	46
24	Thermoelectric Cu ₁₂ Sb ₄ S ₁₃ â€Based Synthetic Minerals with a Sublimationâ€Derived Porous Network. Advanced Materials, 2021, 33, e2103633.	11.1	46
25	Enhanced Thermoelectric Performance in Lead-Free Inorganic CsSn _{1<i>–x</i>} Ge _{<i>x</i>} I ₃ Perovskite Semiconductors. Journal of Physical Chemistry C, 2020, 124, 11749-11753.	1.5	45
26	Ultralow lattice thermal conductivity and enhanced power generation efficiency realized in Bi2Te2.7Se0.3/Bi2S3 nanocomposites. Acta Materialia, 2021, 218, 117230.	3.8	45
27	Achieving an excellent thermoelectric performance in nanostructured copper sulfide bulk via a fast doping strategy. Materials Today Physics, 2019, 8, 71-77.	2.9	44
28	Enhanced thermoelectric properties of SiC nanoparticle dispersed Cu1.8S bulk materials. Journal of Alloys and Compounds, 2017, 696, 782-787.	2.8	43
29	Preparation and thermoelectric properties of ternary superionic conductor CuCrS2. Journal of Solid State Chemistry, 2012, 186, 109-115.	1.4	42
30	Enhancing Thermoelectric Properties of Polycrystalline Bi2S3 by Optimizing a Ball-Milling Process. Journal of Electronic Materials, 2011, 40, 1087-1094.	1.0	41
31	Controllable synthesis: Bi2S3 nanostructure powders and highly textured polycrystals. CrystEngComm, 2012, 14, 2283.	1.3	41
32	High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy. Nano Energy, 2020, 78, 105227.	8.2	40
33	Excellent <i>ZT</i> achieved in Cu _{1.8} S thermoelectric alloys through introducing rare-earth trichlorides. Journal of Materials Chemistry A, 2018, 6, 14440-14448.	5.2	39
34	Microstructure composite-like Bi2S3 polycrystals with enhanced thermoelectric properties. Journal of Materials Chemistry, 2012, 22, 17589.	6.7	36
35	Enhanced thermoelectric properties of Cu1.8S via introducing Bi2S3 and Bi2S3@Bi core-shell nanorods. Journal of Alloys and Compounds, 2017, 727, 1076-1082.	2.8	36
36	Realizing Improved Thermoelectric Performance in Bil ₃ -Doped Sb ₂ Te ₃ (GeTe) ₁₇ via Introducing Dual Vacancy Defects. Chemistry of Materials, 2020, 32, 1693-1701.	3.2	36

#	Article	IF	CITATIONS
37	Highâ€Ranged <i>ZT</i> Value Promotes Thermoelectric Cooling and Power Generation in nâ€Type PbTe. Advanced Energy Materials, 2022, 12, .	10.2	36
38	Fabrication and properties of Bi2S3â^'xSex thermoelectric polycrystals. Solid State Communications, 2013, 162, 48-52.	0.9	34
39	Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence <i>via</i> Q/In (Q = Mg, Ag, Bi) co-doping. Journal of Materials Chemistry A, 2018, 6, 2507-2516.	5.2	34
40	Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials. Ceramics International, 2020, 46, 14994-15002.	2.3	34
41	Highly enhanced thermoelectric properties of nanostructured Bi ₂ S ₃ bulk materials <i>via</i> carrier modification and multi-scale phonon scattering. Inorganic Chemistry Frontiers, 2019, 6, 1374-1381.	3.0	33
42	Investigating the thermoelectric performance of n-type SnSe: the synergistic effect of NbCl ₅ doping and dislocation engineering. Journal of Materials Chemistry C, 2020, 8, 13244-13252.	2.7	31
43	Enhanced Thermoelectric Properties of Polycrystalline SnSe via LaCl3 Doping. Materials, 2018, 11, 203.	1.3	30
44	Facile synthesis of Ag ₂ Te nanowires and thermoelectric properties of Ag ₂ Te polycrystals sintered by spark plasma sintering. CrystEngComm, 2019, 21, 1718-1727.	1.3	30
45	Remarkably enhanced thermoelectric properties of Bi2S3 nanocomposites via modulation doping and grain boundary engineering. Applied Surface Science, 2020, 520, 146341.	3.1	29
46	Enhanced thermoelectric property in superionic conductor Bi-doped Cu1.8S. Journal of Alloys and Compounds, 2017, 708, 169-174.	2.8	27
47	Realizing High Thermoelectric Performance in Earthâ€Abundant Bi ₂ S ₃ Bulk Materials via Halogen Acid Modulation. Advanced Functional Materials, 2021, 31, 2102838.	7.8	27
48	Improvements of thermoelectric properties for p-type Cu _{1.8} S bulk materials via optimizing the mechanical alloying process. Inorganic Chemistry Frontiers, 2017, 4, 1192-1199.	3.0	26
49	Fabrication and properties of Bi2â^'xAg3xS3 thermoelectric polycrystals. Journal of Alloys and Compounds, 2012, 514, 205-209.	2.8	25
50	Synthesis, transport properties, and electronic structure of Cu2CdSnTe4. Applied Physics Letters, 2014, 104, .	1.5	25
51	A synthetic approach for enhanced thermoelectric properties of PEDOT:PSS bulk composites. Applied Physics Letters, 2015, 107, .	1.5	25
52	Highly enhanced thermoelectric properties of Cu1.8S by introducing PbS. Journal of Alloys and Compounds, 2018, 764, 738-744.	2.8	25
53	Achieving high thermoelectric properties of Bi2S3 via InCl3 doping. Journal of Materials Science, 2020, 55, 263-273.	1.7	25
54	Hydrothermal synthesis of SnQ (<i>Q</i> = Te, Se, S) and their thermoelectric properties. Nanotechnology, 2017, 28, 455707.	1.3	24

#	Article	IF	CITATIONS
55	Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering. Crystals, 2017, 7, 141.	1.0	24
56	Improved thermoelectric properties of PEDOT:PSS polymer bulk prepared using spark plasma sintering. Chemical Communications, 2018, 54, 2429-2431.	2.2	24
57	Effects of NbCl5-doping on the thermoelectric properties of polycrystalline Bi2S3. Journal of Solid State Chemistry, 2021, 297, 122043.	1.4	22
58	Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design. Materials Today Physics, 2021, 18, 100394.	2.9	21
59	High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process. Journal of Materials Science and Technology, 2022, 100, 51-58.	5.6	21
60	Size effect of SiO ₂ on enhancing thermoelectric properties of Cu _{1.8} S. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2550-2555.	0.8	20
61	Selective Synthesis of Cu2SnSe3 and Cu2SnSe4 Nanocrystals. Inorganic Chemistry, 2014, 53, 4445-4449.	1.9	20
62	Synergistically enhanced thermoelectric properties of Bi2S3 bulk materials via Cu interstitial doping and BiCl3 alloying. Rare Metals, 2022, 41, 931-941.	3.6	20
63	Thermoelectric properties of p-type semiconductors copper chromium disulfide CuCrS2+x. Journal of Materials Science, 2013, 48, 4081-4087.	1.7	19
64	Effects of second phases on thermoelectric properties in copper sulfides with Sn addition. Journal of Materials Research, 2017, 32, 3029-3037.	1.2	19
65	Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method. Journal of Materiomics, 2018, 4, 402-411.	2.8	19
66	Achieving high thermoelectric performance of Cu _{1.8} S composites with WSe ₂ nanoparticles. Nanotechnology, 2018, 29, 345402.	1.3	19
67	Highly enhanced thermoelectric performance in BiCuSeO ceramics realized by Pb doping and introducing Cu deficiencies. Journal of the American Ceramic Society, 2019, 102, 5989-5996.	1.9	19
68	Synergetic Tuning of the Electrical and Thermal Transport Properties via Pb/Ag Dual Doping in BiCuSeO. ACS Applied Materials & Interfaces, 2019, 11, 45737-45745.	4.0	19
69	Realizing high thermoelectric performance in n-type SnSe polycrystals via (Pb, Br) co-doping and multi-nanoprecipitates synergy. Journal of Alloys and Compounds, 2021, 864, 158401.	2.8	19
70	Electro-responsive 1-D nanomaterial driven broad-band reflection in chiral nematic liquid crystals. Journal of Materials Chemistry C, 2013, 1, 216-219.	2.7	18
71	Mechanical Alloying and Spark Plasma Sintering of BiCuSeO Oxyselenide: Synthesis Process and Thermoelectric Properties. Journal of the American Ceramic Society, 2016, 99, 507-514.	1.9	18
72	Enhanced thermoelectric properties of Cu1.8Se1â^'S alloys prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2016, 680, 273-277.	2.8	18

#	Article	IF	CITATIONS
73	Facile Synthesis of NaBiS ₂ Nanoribbons as a Promising Visible Lightâ€Driven Photocatalyst. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800135.	1.2	18
74	Thermoelectric properties of polycrystalline SnSe _{1±x} prepared by mechanical alloying and spark plasma sintering. RSC Advances, 2016, 6, 92335-92340.	1.7	17
75	Facile synthesis and thermoelectric properties of Cu1.96S compounds. Journal of Solid State Chemistry, 2018, 265, 140-147.	1.4	17
76	High thermoelectric performance realized in porous Cu1.8S based composites by Na2S addition. Materials Science in Semiconductor Processing, 2020, 107, 104848.	1.9	17
77	Controllable Synthesis of Bismuth Chalcogenide Core–shell Nanorods. Crystal Growth and Design, 2014, 14, 533-536.	1.4	15
78	Synthesis and thermoelectric properties of InSb alloys by solid reaction. Materials Letters, 2017, 209, 373-375.	1.3	15
79	Weak-ferromagnetism for room temperature thermoelectric performance enhancement in p-type (Bi,Sb)2Te3. Materials Today Physics, 2021, 19, 100423.	2.9	15
80	Ternary Ag ₂ Se _{1–<i>x</i>} Te _{<i>x</i>} : A Near-Room-Temperature Thermoelectric Material with a Potentially High Figure of Merit. Inorganic Chemistry, 2021, 60, 14165-14173.	1.9	15
81	Enhanced thermoelectric performance of Cu1.8S via lattice softening. Chemical Engineering Journal, 2022, 428, 131153.	6.6	15
82	Synthesis and transport properties of AgBi3S5 ternary sulfide compound. Intermetallics, 2013, 36, 96-101.	1.8	14
83	Thermoelectric properties of Cu2Se prepared by solution phase methods and spark plasma sintering. Journal of the European Ceramic Society, 2017, 37, 4687-4692.	2.8	14
84	Thermophysical properties of SmTaO ₄ , Sm ₃ TaO ₇ and SmTa ₃ O ₉ ceramics. Materials Research Express, 2020, 7, 015204.	0.8	14
85	Excellent thermoelectric performance achieved in Bi ₂ Te ₃ /Bi ₂ S ₃ @Bi nanocomposites. Chemical Communications, 2021, 57, 2555-2558.	2.2	14
86	Ni metal coating boosting the thermoelectric performance of In2O3(ZnO)5 ceramics. Scripta Materialia, 2019, 164, 71-75.	2.6	13
87	Effects of sintering temperature on thermoelectric properties of Cu _{1.8} S bulk materials. Materials Research Express, 2020, 7, 015923.	0.8	13
88	Synergistically optimized electrical and thermal properties by introducing electron localization and phonon scattering centers in CuGaTe ₂ with enhanced mechanical properties. Journal of Materials Chemistry C, 2020, 8, 7534-7542.	2.7	13
89	Thermoelectric properties of CuyBixSb2â^'xâ~'yTe3 alloys fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 2012, 25, 131-135.	1.8	12
90	Highly enhanced thermoelectric properties of p-type CuInSe2 alloys by the Vacancy Doping. Scripta Materialia, 2018, 149, 88-92.	2.6	12

#	Article	IF	CITATIONS
91	Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum. Materials Letters, 2020, 268, 127586.	1.3	12
92	Excellent thermoelectric properties and stability realized in copper sulfides based composites via complex nanostructuring. Acta Materialia, 2022, 233, 117972.	3.8	12
93	Enhanced thermoelectric properties of In ₂ O ₃ (ZnO) ₅ intrinsic superlattice ceramics by optimizing the sintering process. RSC Advances, 2017, 7, 49883-49889.	1.7	11
94	Large enhancement of thermoelectric performance of InTe compound by sintering and CuInTe2 doping. Journal of Applied Physics, 2019, 126, .	1.1	11
95	Enhanced thermoelectric properties of Pb-doped Cu1.8S polycrystalline materials. Solid State Sciences, 2019, 95, 105953.	1.5	10
96	Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating. Journal of Materials Research, 2019, 34, 2653-2663.	1.2	10
97	Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment. ACS Applied Materials & Interfaces, 2021, 13, 45589-45599.	4.0	10
98	Entropy Engineering Realized Ultralow Thermal Conductivity and High Seebeck Coefficient in Lead-Free SnTe. ACS Applied Energy Materials, 2021, 4, 12738-12744.	2.5	10
99	First-principles study of pressure-induced phase transformations in thermoelectric Mg2Si. Journal of Alloys and Compounds, 2019, 773, 988-996.	2.8	9
100	Precious metal nanoparticles dispersing toward highly enhanced mechanical and thermoelectric properties of copper sulfides. Journal of Alloys and Compounds, 2022, 892, 162035.	2.8	9
101	Enhanced thermoelectric properties of natural chalcopyrite by vacuum annealing. Materials Letters, 2019, 253, 430-433.	1.3	8
102	Electrochemiluminescence sensor based on cyclic peptides-recognition and Au nanoparticles assisted graphitic carbon nitride for glucose determination. Mikrochimica Acta, 2021, 188, 151.	2.5	8
103	Enhanced thermoelectric performance in inorganic CsSnI3 perovskite by doping with PbI2. Materials Letters, 2022, 308, 131127.	1.3	8
104	Atomicâ€Scale Observation of Offâ€Centering Rattlers in Filled Skutterudites. Advanced Energy Materials, 2022, 12, .	10.2	8
105	Synthesis and low-temperature transport properties of polycrystalline NiSe ₂ . Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2725-2728.	0.8	7
106	Enhancing thermoelectric properties of Cu _{1.8+<i>x</i>} Se compounds. Journal of Materials Research, 2014, 29, 1047-1053.	1.2	7
107	Morphology and phase evolution from CuS to Cu _{1.8} S in a hydrothermal process and thermoelectric properties of Cu _{1.8} S bulk. CrystEngComm, 2019, 21, 5797-5803.	1.3	7
108	Shashlik-like Te–Bi2Te3 hetero-nanostructures: one-pot synthesis, growth mechanism and their thermoelectric properties. CrystEngComm, 2019, 21, 3694-3701.	1.3	7

#	Article	IF	CITATIONS
109	Significantly reduced lattice thermal conductivity and enhanced thermoelectric performance of In2O3(ZnO)3 ceramics by Ga2O3 doping. Journal of Solid State Chemistry, 2020, 281, 121022.	1.4	7
110	Achievement of Excellent Thermoelectric Properties in Cu–Se–S Compounds via In Situ Phase Separation. Inorganic Chemistry, 2021, 60, 13269-13277.	1.9	7
111	Enhanced Thermoelectric and Mechanical Properties of BaO-Doped BiCuSeO _δ Ceramics. ACS Applied Energy Materials, 2021, 4, 13077-13084.	2.5	7
112	Synthesis and Thermoelectric Properties of LAST System Bulk Materials: Substitution of Sulfur for Tellurium. Journal of Electronic Materials, 2012, 41, 1337-1342.	1.0	6
113	Synergistic modulation of electrical and thermal properties of Cu1.8S bulk materials via nanostructuring and band engineering. Journal of Alloys and Compounds, 2021, 852, 156972.	2.8	6
114	CuPbBi5S9 thermoelectric material with an intrinsic low thermal conductivity: Synthesis and properties. Journal of Materiomics, 2022, 8, 174-183.	2.8	6
115	Effects of different LaCl3 doping processes on the thermoelectric properties of SnSe bulk materials. Journal of Solid State Chemistry, 2022, 310, 123037.	1.4	6
116	Facile Synthesis Bi2Te3 Based Nanocomposites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Nanomaterials, 2021, 11, 3390.	1.9	6
117	Enhanced thermoelectric properties of Bi ₂ S ₃ polycrystals through an electroless nickel plating process. RSC Advances, 2019, 9, 23029-23035.	1.7	5
118	Synthesis process and thermoelectric properties of the layered crystal structure SnS2. Journal of Materials Science: Materials in Electronics, 2020, 31, 5425-5433.	1.1	5
119	Enhanced Thermoelectric Performance of Bi–Se Co-Doped Cu _{1.8} S via Carrier Concentration Regulation and Multiscale Phonon Scattering. ACS Applied Energy Materials, 2022, 5, 5076-5086.	2.5	5
120	Highly enhanced thermoelectric properties of Bi2S3 via (Se, Cl)-co doping in hydrothermal synthesis process. Journal of Alloys and Compounds, 2022, 922, 166252.	2.8	5
121	Chemical Communications, 2020, 56, 11839-11842.	2.2	4
122	Microstructure and thermophysical properties of CeO2-doped SmTaO4 ceramics for thermal barrier coatings. Journal of Materials Research, 2020, 35, 242-251.	1.2	4
123	Investigation of thermophysical properties of ZrO2-Sm3TaO7 ceramics. Journal of Asian Ceramic Societies, 2021, 9, 629-638.	1.0	4
124	Structure and enhanced thermoelectric properties of InGaO3(ZnO)m (m=1, 2, 3, 4, and 5) ceramics. Journal of the European Ceramic Society, 2022, 42, 485-489.	2.8	4
125	Purification and crystal growth of single-crystalline tellurium tubes and rods. Materials Letters, 2017, 194, 20-22.	1.3	3
126	Thermoelectric Properties of In2O3(ZnO)k (k = 3, 4, 5, 7) Superlattice Ceramics. Journal of Electronic Materials, 2019, 48, 7068-7075.	1.0	3

#	Article	IF	CITATIONS
127	Realizing High Photocatalytic Performance of NaBiS ₂ Nanopowders via the Introduction of Rareâ€Earth Elements. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900061.	0.8	3
128	Phase structures and thermophysical properties of ZrO2-doped SmTaO4 ceramics. Modern Physics Letters B, 2019, 33, 1950132.	1.0	3
129	Enhanced thermoelectric properties of Ca3Co4O9+δ ceramics by Sr substitution. Solid State Sciences, 2020, 104, 106190.	1.5	3
130	Synthesis and thermoelectric properties of InSb alloys by solid reaction. Data in Brief, 2018, 21, 2515-2517.	0.5	2
131	The thermophysical properties and defect chemistry of HfO2–Sm3TaO7 ceramics. Journal of Materials Research, 2020, 35, 2230-2238.	1.2	2
132	Thermoelectric properties of polycrystalline Bi2Se3â^'x by powder compaction sintering. Modern Physics Letters B, 2020, 34, 2050206.	1.0	2
133	Realizing High Thermoelectric Performance in Earthâ€Abundant Bi ₂ S ₃ Bulk Materials via Halogen Acid Modulation (Adv. Funct. Mater. 37/2021). Advanced Functional Materials, 2021, 31, 2170277.	7.8	2
134	Microstructure and thermoelectric properties of CuInSe ₂ /In ₂ Se ₃ compound. Modern Physics Letters B, 2018, 32, 1850018.	1.0	1
135	Facile synthesis and thermoelectric properties of Cu7Te4 compounds. Physica B: Condensed Matter, 2020, 595, 412384.	1.3	1
136	Solid solution mechanism and thermophysical properties of HfO2-SmTaO4 ceramics. Materials Today Communications, 2021, 26, 101927.	0.9	0