Beeraiah Baire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Unexpected Formation of 2â€Arylbenzimidazoles from α,αâ€Diiodoâ€Î±â€™â€acetoxyketones and <i>o</i> â€Phenylenediamines. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
2	Tunable Lewis Basicity and Nucleophilicity of Water against α,α-Dihalo-β-acetoxyketones for the Selective Synthesis of α-Haloenones and 1,2-Diketones. Journal of Organic Chemistry, 2022, , .	3.2	0
3	Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic Alcohols. Organic and Biomolecular Chemistry, 2022, 20, 6037-6056.	2.8	12
4	Ag(I)-Promoted, Diastereoselective Cyclo-isomerization of <i>N</i> Alkynyl-7-azaindole-2-carbinols. Selective Synthesis of <i>syn</i> -1,2-Diarylpyrrolo[1,2- <i>a</i>]indol-3-ones and (<i>Z</i>)-8-Benzylideneoxazolo[3′,4′':1,5]pyrrolo[2,3- <i>b</i>]pyridines. Organic Letters, 2022, 24, 5450-5455.	4.6	5
5	Thiourea–Tertiary Amine Promoted Cascade Catalysis: A Tool for Complexity Generation. European Journal of Organic Chemistry, 2021, 2021, 220-234.	2.4	15
6	Evidence for Atropisomerism in Polycyclic γâ€Butenolides: Synthesis, Scope, and Spectroscopic Studies. Chemistry - A European Journal, 2021, 27, 4009-4015.	3.3	8
7	Recent Dearomatization Strategies of Benzofurans and Benzothiophenes. Asian Journal of Organic Chemistry, 2021, 10, 932-948.	2.7	30
8	Fe atalysed Coupling Reactions Between Alkynes and Alcohols. Chemical Record, 2021, 21, 3662-3673.	5.8	5
9	An Approach for the Generation of γ-Propenylidene-γ-butenolides and Application to the Total Synthesis of Rubrolides. Organic Letters, 2021, 23, 5605-5610.	4.6	9
10	TfOH catalysed domino-double annulation of arenes with propargylic alcohols: a unified approach to indene polycyclic systems. Chemical Communications, 2021, 57, 12796-12799.	4.1	8
11	Ag(i)-Promoted homo-dimerization of 2-(alk-2-yn-1-onyl)-1-alkynylbenzenes via a [4 + 2] cycloaddition of benzopyrylium ions: access to structurally unique naphthalenes. Organic and Biomolecular Chemistry, 2021, 20, 247-251.	2.8	2
12	The α,αâ€Đihalocarbonyl Building Blocks: An Avenue for New Reaction Development in Organic Synthesis. Chemistry - A European Journal, 2020, 26, 7145-7175.	3.3	32
13	Oneâ€pot, Direct Synthesis of 3â€Hydroxyâ€3â€arylâ€1â€indanones and their 2â€Benzylidene Derivatives from 2â€Alkynylbenzophenones. ChemistrySelect, 2020, 5, 8151-8156.	1.5	2
14	Frontispiece: The α,αâ€Dihalocarbonyl Building Blocks: An Avenue for New Reaction Development in Organic Synthesis. Chemistry - A European Journal, 2020, 26, .	3.3	0
15	Fe(III)â€Catalyzed, Cyclizative Coupling between 2â€Alkynylbenzoates and Carbinols: Rapid Generation of Polycyclic Isocoumarins and Phthalides and Mechanistic Study. Advanced Synthesis and Catalysis, 2020, 362, 2651-2657.	4.3	9
16	An Unusual Conversion of 2â€(Alkynonyl)Alkynylbenzenes to Isocoumarins by a Retroâ€Favorskiiâ€like Degradation. Chemistry - an Asian Journal, 2019, 14, 3161-3165.	3.3	6
17	Formal Haloâ€Meyer–Schuster Rearrangement of Propargylic Acetates through a Novel Intermediate and an Unexampled Mechanistic Pathway. Chemistry - A European Journal, 2019, 25, 9784-9784.	3.3	0
18	First Approach for Structurally Unique Thieno[2,3―e] isobenzofuranâ€8(6 H)â€one Tricyclic Framework of Echinothiophene and Echinothiophenegenol. ChemistrySelect, 2019, 4, 9811-9813.	1.5	2

BEERAIAH BAIRE

#	Article	IF	CITATIONS
19	Formal Haloâ€Meyer–Schuster Rearrangement of Propargylic Acetates through a Novel Intermediate and an Unexampled Mechanistic Pathway. Chemistry - A European Journal, 2019, 25, 9816-9820.	3.3	15
20	α-bisabolol β-D-fucopyranoside as a potential modulator of β-amyloid peptide induced neurotoxicity: An in vitro & in silico study. Bioorganic Chemistry, 2019, 88, 102935.	4.1	17
21	Acid catalysed rearrangement of isobenzofurans to angularly fused phthalides. Organic and Biomolecular Chemistry, 2019, 17, 4715-4719.	2.8	4
22	Metal Free Synthesis of αâ€Acetoxy/Hydroxymethyl Ketones from Propargylic acetates. ChemistrySelect, 2019, 4, 3376-3380.	1.5	7
23	Unusual Formation of Cyclopenta[<i>b</i>]indoles from 3-Indolylmethanols and Alkynes. Journal of Organic Chemistry, 2019, 84, 3904-3918.	3.2	23
24	Aggregation-Induced Emission Active Donor–Acceptor Fluorophore as a Dual Sensor for Volatile Acids and Aromatic Amines. ACS Applied Materials & Interfaces, 2019, 11, 48249-48260.	8.0	41
25	Calcium(II) Catalyzed Cycloisomerization of <i>cis</i> â€6â€Hydroxy/(Acyloxy)hexâ€2â€enâ€4â€ynals to 2â€Acy 2â€(Acyloxyalkenyl)furans. ChemistrySelect, 2018, 3, 4490-4494.	/l―and 1.5	9
26	Highly regioselective, electrophile induced cyclizations of 2-(prop-1-ynyl)benzamides. Organic and Biomolecular Chemistry, 2018, 16, 3947-3951.	2.8	13
27	Synthetic approach to seco-tetracenomycin natural products saccharothrixone A–C. Tetrahedron Letters, 2018, 59, 1970-1973.	1.4	1
28	Intercepted Meyer–Schuster Rearrangements in Organic Synthesis. Asian Journal of Organic Chemistry, 2018, 7, 1015-1032.	2.7	70
29	Regioselective Cyclization of (Indol-3-yl)pentyn-3-ols as an Approach to (Tetrahydro)carbazoles. Organic Letters, 2018, 20, 1118-1121.	4.6	43
30	An Unprecedented (Semi)Favorskii Rearrangement. Evidence for the 2-(Acyloxy)cyclopropanones. Organic Letters, 2018, 20, 1748-1751.	4.6	11
31	Lewis Basicity of Water for a Selective Monodehalogenation of α,αâ€Đihalo Ketones to αâ€Halo Ketones and Mechanistic Study. Advanced Synthesis and Catalysis, 2018, 360, 298-304.	4.3	19
32	Total synthesis of selaginpulvilins A and C. Organic and Biomolecular Chemistry, 2018, 16, 262-265.	2.8	14
33	Ag(I) atalyzed Cyclizative Hydration of Alkynes and Propargylic Alcohols. A Mild Approach to 2â€Acylfuran Derivatives. ChemistrySelect, 2017, 2, 1058-1062.	1.5	11
34	Formal total synthesis of selaginpulvilin D. Organic and Biomolecular Chemistry, 2017, 15, 5908-5911.	2.8	26
35	Ag(I) Catalyzed Cascade Approach to 2â€{αâ€Hydroxyacyl)pyrroles. ChemistrySelect, 2017, 2, 3964-3968.	1.5	12
36	First Synthesis of the [5â€5â€6â€6] Tetracyclic Framework of Spiropreussione B. European Journal of Organic Chemistry, 2017, 2017, 3457-3460.	2.4	5

BEERAIAH BAIRE

#	Article	IF	CITATIONS
37	On the Distribution of Linear versus Angular Naphthalenes in Aromatic Tetradehydroâ€Diels–Alder Reactions – Effect of Linker Structure and Steric Bulk. European Journal of Organic Chemistry, 2017, 2017, 3381-3385.	2.4	20
38	Carbonyl Directed Regioselective Hydration of Alkynes under Ag atalysis. ChemistrySelect, 2017, 2, 4338-4342.	1.5	23
39	A coherent study on the Z-enoate assisted Meyer–Schuster rearrangement. Organic and Biomolecular Chemistry, 2017, 15, 5579-5584.	2.8	9
40	Unconventional Reactivity of (<i>Z</i>)â€Enoate Propargylic Alcohols in the Presence of Acids. Chemistry - A European Journal, 2017, 23, 2014-2017.	3.3	22
41	Mechanistic Duality in Tertiary Amine Additions to Thermally Generated Hexadehydro-Diels–Alder Benzynes. Organic Letters, 2017, 19, 5705-5708.	4.6	15
42	An Expeditious Approach to α,αâ€Dihaloâ€Î±â€²â€acetoxyketones from Propargylic Acetates. ChemistrySelect, 2 8500-8503.	2017, 2, 1.5	9
43	The dehydro Diels-Alder (DDA) reaction based approach to isofuranonaphthalenone, nodulones A-C and xestolactone A. Tetrahedron, 2017, 73, 4178-4185.	1.9	11
44	<i>N</i> â€lodosuccinimideâ€Promoted Rapid Access to Indeno[1,2â€ <i>c</i>]pyrroles <i>via</i> [3+2] Annulation of Enamineâ€alkynes. Advanced Synthesis and Catalysis, 2016, 358, 3817-3823.	4.3	17
45	The Z-enoate assisted, Meyer–Schuster rearrangement cascade: unconventional synthesis of α-arylenone esters. Chemical Communications, 2016, 52, 12147-12150.	4.1	35
46	Regioselective, cascade [3+2] annulation of β-naphthols (resorcinols) with Z-enoate propargylic alcohols: a novel entry for the synthesis of complex naphtho(benzo)furans. Chemical Communications, 2016, 52, 14290-14293.	4.1	41
47	Catalyst free, three-component approach for unsymmetrical triarylmethanes (TRAMs). Tetrahedron Letters, 2016, 57, 5381-5384.	1.4	9
48	Reactivity of indole-3-alkoxides in the absence of acids: Rapid synthesis of homo-bisindolylmethanes. Tetrahedron, 2016, 72, 8106-8116.	1.9	14
49	A systematic study on the Cadiot–Chodkiewicz cross coupling reaction for the selective and efficient synthesis of hetero-diynes. RSC Advances, 2016, 6, 54449-54455.	3.6	13
50	Competition between classical and hexadehydro-Diels–Alder (HDDA) reactions of HDDA triynes with furan. Tetrahedron Letters, 2015, 56, 3265-3267.	1.4	17
51	Mild Approach to 2-Acylfurans via Intercepted Meyer–Schuster Rearrangement of 6-Hydroxyhex-2-en-4-ynals. Journal of Organic Chemistry, 2015, 80, 8314-8328.	3.2	34
52	Stereoselective, Cascade Synthesis of <i>trans</i> -Enynones through Coupling-Isomerization Reaction. Journal of Organic Chemistry, 2015, 80, 10208-10217.	3.2	19
53	Tactics for probing aryne reactivity: mechanistic studies of silicon–oxygen bond cleavage during the trapping of (HDDA-generated) benzynes by silyl ethers. Chemical Science, 2014, 5, 545-550.	7.4	40
54	Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins. Journal of Biomolecular Screening, 2014, 19, 1201-1211.	2.6	24

BEERAIAH BAIRE

#	Article	IF	CITATIONS
55	Rates of Hexadehydro-Diels–Alder (HDDA) Cyclizations: Impact of the Linker Structure. Organic Letters, 2014, 16, 4578-4581.	4.6	51
56	Cycloaddition Reactions of Azide, Furan, and Pyrrole Units with Benzynes Generated by the Hexadehydro-Diels–Alder (HDDA) Reaction. Heterocycles, 2014, 88, 1191.	0.7	26
57	Alkane desaturation by concerted double hydrogen atom transfer to benzyne. Nature, 2013, 501, 531-534.	27.8	135
58	Synthesis of complex benzenoids via the intermediate generation of o-benzynes through the hexadehydro-Diels-Alder reaction. Nature Protocols, 2013, 8, 501-508.	12.0	55
59	The hexadehydro-Diels–Alder reaction. Nature, 2012, 490, 208-212.	27.8	376
60	Enantiospecific synthesis of ABC-ring system of A-nor and abeo 4(3→2) tetra and pentacyclic triterpenes. Tetrahedron, 2010, 66, 852-861.	1.9	6
61	Enantiospecific synthesis of the tricyclic core structure of lippifolianes. Tetrahedron: Asymmetry, 2010, 21, 719-724.	1.8	3
62	Enantiospecific approach to the tricyclic core structure of tricycloillicinone, ialibinones, and takaneones via ring-closing metathesis reaction. Tetrahedron, 2009, 65, 2649-2654.	1.9	22
63	Enantioselective total synthesis and assignment of the absolute configuration of (+)-laurokamurene B. Tetrahedron: Asymmetry, 2008, 19, 624-627.	1.8	20
64	Enantioselective syntheses of cis, syn, cis- and cis, anti, cis-linear triquinanes. Tetrahedron: Asymmetry, 2008, 19, 884-890.	1.8	10
65	Synthesis of (±)â€ <i>ar</i> â€Macrocarpene. Synthetic Communications, 2007, 37, 2855-2860.	2.1	6
66	An enantiospecific synthesis of a komarovispirane. Tetrahedron: Asymmetry, 2007, 18, 2587-2597.	1.8	11
67	Synthetic approaches to komarovispiranes. Enantiospecific synthesis of bicyclo[$3.3.0$]octanespiro[$3.1\hat{a}\in^2$]cyclohexanes. Tetrahedron Letters, 2007, 48, 2291-2294.	1.4	9
68	Chiral synthons from α-pinene: enantioselective syntheses of bicyclo[3.3.0] and [3.2.1]octanones. Tetrahedron: Asymmetry, 2006, 17, 1544-1548.	1.8	18