David A Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825348/publications.pdf

Version: 2024-02-01

DAVID & LONES

#	Article	IF	CITATIONS
1	lsolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266, 789-793.	12.6	885
2	The Tomato Cf-2 Disease Resistance Locus Comprises Two Functional Genes Encoding Leucine-Rich Repeat Proteins. Cell, 1996, 84, 451-459.	28.9	591
3	Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato. Cell, 1997, 91, 821-832.	28.9	562
4	Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 2004, 16, 48-62.	5.5	290
5	The Tomato Cf-5 Disease Resistance Gene and Six Homologs Show Pronounced Allelic Variation in Leucine-Rich Repeat Copy Number. Plant Cell, 1998, 10, 1915-1925.	6.6	286
6	GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant Journal, 2003, 33, 775-792.	5.7	240
7	Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant Journal, 1995, 8, 785-794.	5.7	215
8	Cytoskeleton and cell wall function in penetration resistance. Current Opinion in Plant Biology, 2007, 10, 342-348.	7.1	212
9	Internalization of Flax Rust Avirulence Proteins into Flax and Tobacco Cells Can Occur in the Absence of the Pathogen. Plant Cell, 2010, 22, 2017-2032.	6.6	185
10	The tomato <i>lâ€3</i> gene: a novel gene for resistance to Fusarium wilt disease. New Phytologist, 2015, 207, 106-118.	7.3	169
11	Structure and function of proteins controlling strain-specific pathogen resistance in plants. Current Opinion in Plant Biology, 1998, 1, 288-293.	7.1	153
12	Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytologist, 2009, 183, 993-1000.	7.3	153
13	Characterization and Evolutionary Analysis of a Large Polygalacturonase Gene Family in the Oomycete Plant Pathogen Phytophthora cinnamomi. Molecular Plant-Microbe Interactions, 2002, 15, 907-921.	2.6	135
14	The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Frontiers in Plant Science, 2014, 5, 98.	3.6	126
15	ldentification of <scp><i>I</i></scp> <i>â€7</i> expands the repertoire of genes for resistance to <scp>F</scp> usarium wilt in tomato to three resistance gene classes. Molecular Plant Pathology, 2016, 17, 448-463.	4.2	125
16	The C-Terminal Dilysine Motif Confers Endoplasmic Reticulum Localization to Type I Membrane Proteins in Plants. Plant Cell, 2000, 12, 1179-1201.	6.6	107
17	The tomato <i>I</i> gene for Fusarium wilt resistance encodes an atypical leucineâ€rich repeat receptorâ€like protein whose function is nevertheless dependent on <scp>SOBIR</scp> 1 and <scp>SERK</scp> 3/ <scp>BAK</scp> 1. Plant Journal, 2017, 89, 1195-1209.	5.7	103
18	Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Molecular Plant Pathology, 2017, 18, 811-824.	4.2	95

DAVID A JONES

#	Article	IF	CITATIONS
19	Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Molecular Genetics and Genomics, 1994, 242, 573-585.	2.4	82
20	Construction of a Traâ^' deletion mutant of pAgK84 to safeguard the biological control of crown gall. Molecular Genetics and Genomics, 1988, 212, 207-214.	2.4	77
21	Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17594-17599.	7.1	75
22	Characterization of the Tomato Cf-4 Gene for Resistance to Cladosporium fulvum Identifies Sequences That Determine Recognitional Specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9, 2209.	6.6	67
23	The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against <i>Phytophthora infestans</i> in <i>Nicotiana benthamiana</i> . Plant Cell, 2016, 28, 1163-1181.	6.6	66
24	Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei. Molecular Plant Pathology, 2006, 7, 553-563.	4.2	62
25	N-Terminal Motifs in Some Plant Disease Resistance Proteins Function in Membrane Attachment and Contribute to Disease Resistance. Molecular Plant-Microbe Interactions, 2012, 25, 379-392.	2.6	62
26	Lipid binding activities of flax rust AvrM and AvrL567 effectors. Plant Signaling and Behavior, 2010, 5, 1272-1275.	2.4	59
27	Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics, 2016, 17, 667.	2.8	59
28	Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theoretical and Applied Genetics, 2004, 109, 409-418.	3.6	56
29	Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Molecular Biology, 1988, 11, 551-559.	3.9	54
30	Membrane Release and Destabilization of Arabidopsis RIN4 Following Cleavage by Pseudomonas syringae AvrRpt2. Molecular Plant-Microbe Interactions, 2005, 18, 1258-1268.	2.6	54
31	Homologues of the Cf-9 Disease Resistance Gene (Hcr9s) Are Present at Multiple Loci on the Short Arm of Tomato Chromosome 1. Molecular Plant-Microbe Interactions, 1999, 12, 93-102.	2.6	53
32	Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid, 1990, 23, 126-137.	1.4	48
33	ldentification of Two Genes Required in Tomato for Full Cf-9: Dependent Resistance to Cladosporium fulvum. Plant Cell, 1994, 6, 361.	6.6	48
34	Recognitional Specificity and Evolution in the Tomato– <i>Cladosporium fulvum</i> Pathosystem. Molecular Plant-Microbe Interactions, 2009, 22, 1191-1202.	2.6	48
35	The Major Specificity-Determining Amino Acids of the Tomato Cf-9 Disease Resistance Protein Are at Hypervariable Solvent-Exposed Positions in the Central Leucine-Rich Repeats. Molecular Plant-Microbe Interactions, 2009, 22, 1203-1213.	2.6	46
36	Differences in Cell Death Induction by Phytophthora Elicitins Are Determined by Signal Components Downstream of MAP Kinase Kinase in Different Species of Nicotiana and Cultivars of Brassica rapa and Raphanus sativus. Plant Physiology, 2005, 138, 1491-1504.	4.8	41

DAVID A JONES

#	Article	IF	CITATIONS
37	Mapping thel-3gene for resistance to Fusarium wilt in tomato: application of anl-3marker in tomato improvement and progress towards the cloning ofl-3. Australasian Plant Pathology, 2006, 35, 671.	1.0	37
38	Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry―and tomatoâ€infecting formae speciales of <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2018, 19, 2302-2318.	4.2	36
39	A flax transposon identified in two spontaneous mutant alleles of theL6rust resistance gene. Plant Journal, 1998, 16, 365-369.	5.7	31
40	The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes. Plant Molecular Biology, 1990, 14, 785-792.	3.9	30
41	Crystal structure of the Melampsora lini effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P. Molecular Plant Pathology, 2018, 19, 1196-1209.	4.2	24
42	The crystal structure of SnTox3 from the necrotrophic fungus <i>Parastagonospora nodorum</i> reveals a unique effector fold and provides insight into Snn3 recognition and proâ€domain protease processing of fungal effectors. New Phytologist, 2021, 231, 2282-2296.	7.3	24
43	High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theoretical and Applied Genetics, 2008, 118, 57-75.	3.6	23
44	Use of the maize transposonsActivator andDissociation to show that phosphinothricin and spectinomycin resistance genes act non-cell-autonomously in tobacco and tomato seedlings. Transgenic Research, 1993, 2, 63-78.	2.4	19
45	The Tomato Cf-5 Disease Resistance Gene and Six Homologs Show Pronounced Allelic Variation in Leucine-Rich Repeat Copy Number. Plant Cell, 1998, 10, 1915.	6.6	17
46	Regions of the Cf-9B Disease Resistance Protein Able to Cause Spontaneous Necrosis in <i>Nicotiana benthamiana</i> Lie Within the Region Controlling Pathogen Recognition in Tomato. Molecular Plant-Microbe Interactions, 2009, 22, 1214-1226.	2.6	17
47	Regeneration of Shoots on Root Explants of Flax. Annals of Botany, 1989, 63, 297-299.	2.9	16
48	Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567â€A. Molecular Plant Pathology, 2019, 20, 211-222.	4.2	15
49	Ensnaring microbes: the components of plant disease resistance. New Phytologist, 1996, 133, 11-34.	7.3	14
50	Effector proteins of extracellular fungal plant pathogens that trigger host resistance. Functional Plant Biology, 2010, 37, 901.	2.1	14
51	Flax rust infection transcriptomics reveals a transcriptional profile that may be indicative for rust Avr genes. PLoS ONE, 2019, 14, e0226106.	2.5	14
52	A mutational analysis of the cytosolic domain of the tomato <scp>C</scp> fâ€9 diseaseâ€resistance protein shows that membraneâ€proximal residues are important for <scp>A</scp> vr9â€dependent necrosis. Molecular Plant Pathology, 2016, 17, 565-576.	4.2	12
53	A tomato mutant that shows stunting, wilting, progressive necrosis and constitutive expression of defence genes contains a recombinant Hcr9 gene encoding an autoactive protein. Plant Journal, 2006, 46, 369-384.	5.7	8
54	Transcriptome Analysis of Fusarium–Tomato Interaction Based on an Updated Genome Annotation of Fusarium oxysporum f. sp. lycopersici Identifies Novel Effector Candidates That Suppress or Induce Cell Death in Nicotiana benthamiana. Journal of Fungi (Basel, Switzerland), 2022, 8, 672.	3.5	8

DAVID A JONES

#	Article	IF	CITATIONS
55	Chloroplast targeting of spectinomycin adenyltransferase provides a cell-autonomous marker for monitoring transposon excision in tomato and tobacco. Molecular Genetics and Genomics, 1994, 244, 189-196.	2.4	6
56	Dominantâ€negative interference with defence signalling by truncation mutations of the tomato Cfâ€9 disease resistance gene. Plant Journal, 2006, 46, 385-399.	5.7	6
57	ER retrieval of Avr9 compromises its elicitor activity consistent with perception of Avr9 at the plasma membrane. Molecular Plant Pathology, 2005, 6, 193-197.	4.2	4
58	Particle Bombardment-Mediated Transient Expression to Identify Localization Signals in Plant Disease Resistance Proteins and Target Sites for the Proteolytic Activity of Pathogen Effectors. Methods in Molecular Biology, 2014, 1127, 91-101.	0.9	4
59	Development of PCR-based markers from the tomato glutamate oxaloacetate transaminase isozyme gene family as a means of revitalising old isozyme markers and recruiting new ones. Molecular Breeding, 2007, 19, 209-214.	2.1	3
60	Optimized Production of Disulfide-Bonded Fungal Effectors in <i>Escherichia coli</i> Using CyDisCo and FunCyDisCo Coexpression Approaches. Molecular Plant-Microbe Interactions, 2022, 35, 109-118.	2.6	3
61	The C-Terminal Dilysine Motif Confers Endoplasmic Reticulum Localization to Type I Membrane Proteins in Plants. Plant Cell, 2000, 12, 1179.	6.6	1
62	Instant diamond. Nature, 1999, 401, 544-544.	27.8	0