
Ming-Tian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trinuclear Nickel Catalyst for Water Oxidation: Intramolecular Proton-Coupled Electron Transfer Triggered Trimetallic Cooperative O–O Bond Formation. CCS Chemistry, 2023, 5, 245-256.	4.6	14
2	Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand. Nature Communications, 2022, 13, 428.	5.8	14
3	Proton-Coupled Electron-Transfer Reduction of Dioxygen: The Importance of Precursor Complex Formation between Electron Donor and Proton Donor. Journal of the American Chemical Society, 2022, 144, 12459-12468.	6.6	14
4	Metal-Free Electrocatalyst for Water Oxidation Initiated by Hydrogen Atom Transfer. ACS Catalysis, 2021, 11, 68-73.	5.5	32
5	Iron atalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angewandte Chemie, 2021, 133, 12575-12582.	1.6	4
6	Iron atalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angewandte Chemie - International Edition, 2021, 60, 12467-12474.	7.2	28
7	Bimetallic water oxidation: One-site catalysis with two-sites oxidation. Journal of Energy Chemistry, 2021, 63, 1-7.	7.1	11
8	Bioinspired molecular clusters for water oxidation. Coordination Chemistry Reviews, 2021, 448, 214164.	9.5	24
9	Bioinspired Trinuclear Copper Catalyst for Water Oxidation with a Turnover Frequency up to 20000 s ^{–1} . Journal of the American Chemical Society, 2021, 143, 19761-19768.	6.6	55
10	Redoxâ€Active Ligand Assisted Catalytic Water Oxidation by a Ru IV =O Intermediate. Angewandte Chemie, 2020, 132, 4029-4037.	1.6	11
11	Redoxâ€Active Ligand Assisted Catalytic Water Oxidation by a Ru ^{IV} =O Intermediate. Angewandte Chemie - International Edition, 2020, 59, 4000-4008.	7.2	40
12	Highly efficient and selective photocatalytic CO ₂ to CO conversion in aqueous solution. Chemical Communications, 2020, 56, 3851-3854.	2.2	28
13	The Application of Pincer Ligand in Catalytic Water Splitting. Topics in Organometallic Chemistry, 2020, , 379.	0.7	0
14	A Supramolecular Radical Dimer: Highâ€Efficiency NIRâ€II Photothermal Conversion and Therapy. Angewandte Chemie - International Edition, 2019, 58, 15526-15531.	7.2	168
15	A Supramolecular Radical Dimer: Highâ€Efficiency NIRâ€II Photothermal Conversion and Therapy. Angewandte Chemie, 2019, 131, 15672-15677.	1.6	44
16	Proton-coupled electron transfer oxidation of O–H bond by the N-radical cation of Wurster's blue salt (TMPDA˙ ⁺). Chemical Communications, 2019, 55, 3465-3468.	2.2	2
17	Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Co ^{III} Complex as Water Oxidation Catalyst. Journal of the American Chemical Society, 2018, 140, 1557-1565.	6.6	125
18	Photocatalytic Hydrogen Production with Conjugated Polymers as Photosensitizers. ACS Applied Materials & Interfaces, 2018, 10, 10828-10834.	4.0	39

Ming-Tian Zhang

#	Article	IF	CITATIONS
19	Visible-light-mediated C(sp3)-H activation by photo-induced hydrogen-atom transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 109-113.	2.0	4
20	Electrocatalytic Water Oxidation by an Unsymmetrical <i>Di</i> -Copper Complex. Inorganic Chemistry, 2018, 57, 10481-10484.	1.9	54
21	Bimetallic cooperative effect on O–O bond formation: copper polypyridyl complexes as water oxidation catalyst. Dalton Transactions, 2018, 47, 8670-8675.	1.6	39
22	A chiral ion-pair photoredox organocatalyst: enantioselective anti-Markovnikov hydroetherification of alkenols. Organic Chemistry Frontiers, 2017, 4, 1037-1041.	2.3	48
23	Proton-Coupled Electron Transfer in a Series of Ruthenium-Linked Tyrosines with Internal Bases: Evaluation of a Tunneling Model for Experimental Temperature-Dependent Kinetics. Journal of Physical Chemistry B, 2016, 120, 9308-9321.	1.2	17
24	Tuning Excitedâ€State Reactivity by Protonâ€Coupled Electron Transfer. Angewandte Chemie, 2016, 128, 13326-13330.	1.6	5
25	Tuning Excitedâ€State Reactivity by Protonâ€Coupled Electron Transfer. Angewandte Chemie - International Edition, 2016, 55, 13132-13136.	7.2	12
26	Cu(II) Aliphatic Diamine Complexes for Both Heterogeneous and Homogeneous Water Oxidation Catalysis in Basic and Neutral Solutions. ACS Catalysis, 2016, 6, 77-83.	5.5	90
27	Electrocatalytic Water Oxidation by a Dinuclear Copper Complex in a Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2015, 54, 4909-4914.	7.2	228
28	Fast and Simple Preparation of Ironâ€Based Thin Films as Highly Efficient Waterâ€Oxidation Catalysts in Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2015, 54, 4870-4875.	7.2	256
29	Organic Photocatalytic Cyclization of Polyenes: A Visibleâ€Lightâ€Mediated Radical Cascade Approach. Chemistry - A European Journal, 2015, 21, 14723-14727.	1.7	28
30	Frontispiece: Homogeneous Electrocatalytic Water Oxidation at Neutral pH by a Robust Macrocyclic Nickel(II) Complex. Angewandte Chemie - International Edition, 2014, 53, .	7.2	0
31	Homogeneous Electrocatalytic Water Oxidation at Neutral pH by a Robust Macrocyclic Nickel(II) Complex. Angewandte Chemie - International Edition, 2014, 53, 13042-13048.	7.2	251
32	Making syngas electrocatalytically using a polypyridyl ruthenium catalyst. Chemical Communications, 2014, 50, 335-337.	2.2	61
33	Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)–Aqua Complex. Journal of the American Chemical Society, 2014, 136, 5531-5534.	6.6	209
34	Multiple Pathways in the Oxidation of a NADH Analogue. Inorganic Chemistry, 2014, 53, 4100-4105.	1.9	10
35	Singleâ€ S ite Copper(II) Water Oxidation Electrocatalysis: Rate Enhancements with HPO ₄ ^{2â^'} as a Proton Acceptor at pHâ€8. Angewandte Chemie - International Edition, 2014, 53, 12226-12230.	7.2	188
36	Cu(ii)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energy and Environmental Science, 2013, 6, 813.	15.6	76

MING-TIAN ZHANG

#	Article	IF	CITATIONS
37	Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex. Journal of the American Chemical Society, 2013, 135, 2048-2051.	6.6	429
38	Role of Proton-Coupled Electron Transfer in the Redox Interconversion between Benzoquinone and Hydroquinone. Journal of the American Chemical Society, 2012, 134, 18538-18541.	6.6	48
39	Spanning Four Mechanistic Regions of Intramolecular Proton-Coupled Electron Transfer in a Ru(bpy) ₃ ²⁺ –Tyrosine Complex. Journal of the American Chemical Society, 2012, 134, 16247-16254.	6.6	75
40	Bimolecular proton-coupled electron transfer from tryptophan with water as the proton acceptor. Energy and Environmental Science, 2012, 5, 7732.	15.6	26
41	Proton-Coupled Electron Transfer from Tryptophan: A Concerted Mechanism with Water as Proton Acceptor. Journal of the American Chemical Society, 2011, 133, 8806-8809.	6.6	78
42	Proton-Coupled Electron Transfer from Tyrosine: A Strong Rate Dependence on Intramolecular Proton Transfer Distance. Journal of the American Chemical Society, 2011, 133, 13224-13227.	6.6	114
43	Hydride, Hydrogen Atom, Proton, and Electron Transfer Driving Forces of Various Five-Membered Heterocyclic Organic Hydrides and Their Reaction Intermediates in Acetonitrile. Journal of the American Chemical Society, 2008, 130, 2501-2516.	6.6	309