Richard Culleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824873/publications.pdf

Version: 2024-02-01

96 papers 3,372 citations

172457 29 h-index 53 g-index

113 all docs

113 docs citations

113 times ranked

3824 citing authors

#	Article	IF	CITATIONS
1	Emergence of Indigenous Artemisinin-Resistant <i>Plasmodium falciparum</i> in Africa. New England Journal of Medicine, 2017, 376, 991-993.	27.0	219
2	Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. The Lancet Global Health, 2017, 5, e1038-e1046.	6.3	179
3	African origin of the malaria parasite Plasmodium vivax. Nature Communications, 2014, 5, 3346.	12.8	167
4	Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Molecular Microbiology, 2007, 65, 27-40.	2.5	159
5	The contribution of Plasmodium chabaudi to our understanding of malaria. Trends in Parasitology, 2012, 28, 73-82.	3.3	148
6	Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. International Journal for Parasitology, 2011, 41, 677-683.	3.1	125
7	Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among Humans and Anopheles dirus Mosquitoes, Southern Vietnam. Emerging Infectious Diseases, 2011, 17, 1232-1239.	4.3	125
8	Host heterogeneity is a determinant of competitive exclusion or coexistence in genetically diverse malaria infections. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1073-1080.	2.6	107
9	Big Bang in the Evolution of Extant Malaria Parasites. Molecular Biology and Evolution, 2008, 25, 2233-2239.	8.9	94
10	Adaptation of a visualized loop-mediated isothermal amplification technique for field detection of Plasmodium vivax infection. Parasites and Vectors, 2011, 4, 115.	2.5	94
11	A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 814-819.	7.1	90
12	Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections. Malaria Journal, 2004, 3, 33.	2.3	83
13	Evidence for the Transmission ofPlasmodium vivaxin the Republic of the Congo, West Central Africa. Journal of Infectious Diseases, 2009, 200, 1465-1469.	4.0	81
14	Failure to detect Plasmodium vivax in West and Central Africa by PCR species typing. Malaria Journal, 2008, 7, 174.	2.3	75
15	Limited Geographical Origin and Global Spread of Sulfadoxine-Resistant dhps Alleles in Plasmodium falciparum Populations. Journal of Infectious Diseases, 2011, 204, 1980-1988.	4.0	74
16	Linkage group selection: Rapid gene discovery in malaria parasites. Genome Research, 2005, 15, 92-97.	5.5	73
17	Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. International Journal for Parasitology, 2016, 46, 685-696.	3.1	59
18	Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. Journal of Physiological Anthropology, 2020, 39, 36.	2.6	56

#	Article	IF	CITATIONS
19	Anopheles dirus co-infection with human and monkey malaria parasites in Vietnam. International Journal for Parasitology, 2009, 39, 1533-1537.	3.1	55
20	Lipocalin 2 Bolsters Innate and Adaptive Immune Responses to Blood-Stage Malaria Infection by Reinforcing Host Iron Metabolism. Cell Host and Microbe, 2012, 12, 705-716.	11.0	50
21	Gene encoding erythrocyte binding ligand linked to blood stage multiplication rate phenotype in <i>>Plasmodium yoelii yoelii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7161-7166.	7.1	46
22	Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Molecular and Biochemical Parasitology, 2007, 156, 74-79.	1.1	45
23	DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. International Journal for Parasitology, 2014, 44, 467-473.	3.1	44
24	The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing. PLoS ONE, 2011, 6, e29137.	2.5	42
25	Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nature Communications, 2020, 11, 2763.	12.8	41
26	African Plasmodium vivax: Distribution and origins. International Journal for Parasitology, 2012, 42, 1091-1097.	3.1	38
27	Artemisinin resistance in Plasmodium falciparum: what is it really?. Trends in Parasitology, 2013, 29, 318-320.	3.3	38
28	Humans frequently exposed to a range of non-human primate malaria parasite species through the bites of Anopheles dirus mosquitoes in South-central Vietnam. Parasites and Vectors, 2015, 8, 376.	2.5	36
29	A cascade of transcriptional repression determines sexual commitment and development in <i>Plasmodium falciparum /i>. Nucleic Acids Research, 2021, 49, 9264-9279.</i>	14.5	36
30	Antimalarial Drugs Clear Resistant Parasites from Partially Immune Hosts. Antimicrobial Agents and Chemotherapy, 2001, 45, 2897-2901.	3.2	35
31	Time-Lapse Imaging of Red Blood Cell Invasion by the Rodent Malaria Parasite Plasmodium yoelii. PLoS ONE, 2012, 7, e50780.	2.5	33
32	Indigenous evolution of Plasmodium falciparum pyrimethamine resistance multiple times in Africa. Journal of Antimicrobial Chemotherapy, 2008, 63, 252-255.	3.0	31
33	The prevalence of molecular markers of drug resistance in Plasmodium vivax from the border regions of Thailand in 2008 and 2014. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 229-237.	3.4	30
34	An assay for the identification of Plasmodium simium infection for diagnosis of zoonotic malaria in the Brazilian Atlantic Forest. Scientific Reports, 2018, 8, 86.	3.3	29
35	Within-host Competition Does Not Select for Virulence in Malaria Parasites; Studies with Plasmodium yoelii. PLoS Pathogens, 2015, 11, e1004628.	4.7	28
36	The species specificity of immunity generated by live whole organism immunisation with erythrocytic and pre-erythrocytic stages of rodent malaria parasites and implications for vaccine development. International Journal for Parasitology, 2012, 42, 859-870.	3.1	26

#	Article	IF	CITATIONS
37	PCR-based detection of Plasmodium falciparum in saliva using mitochondrial cox3 and varATS primers. Tropical Medicine and Health, 2018, 46, 22.	2.8	26
38	High prevalence of Plasmodium malariae and Plasmodium ovale in co-infections with Plasmodium falciparum in asymptomatic malaria parasite carriers in southwestern Nigeria. International Journal for Parasitology, 2022, 52, 23-33.	3.1	24
39	Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS Pathogens, 2017, 13, e1006447.	4.7	23
40	Genome-wide landscape of ApiAP2 transcription factors reveals a heterochromatin-associated regulatory network during <i>Plasmodium falciparum</i> blood-stage development. Nucleic Acids Research, 2022, 50, 3413-3431.	14.5	23
41	The use of facemasks may not lead to an increase in hand–face contact. Transboundary and Emerging Diseases, 2020, 67, 3038-3040.	3.0	22
42	How genomics is contributing to the fight against artemisinin-resistant malaria parasites. Acta Tropica, $2015,148,1$ -7.	2.0	21
43	The genome of the zoonotic malaria parasite Plasmodium simium reveals adaptations to host switching. BMC Biology, 2021, 19, 219.	3.8	21
44	A brief history of artemisinin: Modes of action and mechanisms of resistance. Chinese Journal of Natural Medicines, 2019, 17, 331-336.	1.3	20
45	The Consequences of Mixed-Species Malaria Parasite Co-Infections in Mice and Mosquitoes for Disease Severity, Parasite Fitness, and Transmission Success. Frontiers in Immunology, 2019, 10, 3072.	4.8	20
46	Erythrocyte binding ligands in malaria parasites: Intracellular trafficking and parasite virulence. Acta Tropica, 2010, 114, 131-137.	2.0	19
47	Malaria parasite species composition of Plasmodium infections among asymptomatic and symptomatic school-age children in rural and urban areas of Kinshasa, Democratic Republic of Congo. Malaria Journal, 2021, 20, 389.	2.3	19
48	Plasmodium falciparum: Differential Selection of Drug Resistance Alleles in Contiguous Urban and Peri-Urban Areas of Brazzaville, Republic of Congo. PLoS ONE, 2011, 6, e23430.	2.5	18
49	The intradermal route for inoculation of sporozoites of rodent malaria parasites for immunological studies. Parasite Immunology, 2011, 33, 137-142.	1.5	18
50	In vivo and in vitro gametocyte production of Plasmodium falciparum isolates from Northern Thailand. International Journal for Parasitology, 2011, 41, 317-323.	3.1	18
51	Little Polymorphism at the K13 Propeller Locus in Worldwide Plasmodium falciparum Populations Prior to the Introduction of Artemisinin Combination Therapies. Antimicrobial Agents and Chemotherapy, 2016, 60, 3340-3347.	3.2	18
52	Mechanisms of Drug Resistance in Malaria: Current and New Challenges. Anti-Infective Agents in Medicinal Chemistry, 2006, 5, 63-73.	0.6	17
53	Human infection with Plasmodium knowlesi on the Laos-Vietnam border. Tropical Medicine and Health, 2018, 46, 33.	2.8	17
54	A Systematic In Silico Search for Target Similarity Identifies Several Approved Drugs with Potential Activity against the Plasmodium falciparum Apicoplast. PLoS ONE, 2013, 8, e59288.	2.5	17

#	Article	IF	CITATIONS
55	<i>Plasmodium knowlesi</i> and human malaria parasites in Khan Phu, Vietnam: Gametocyte production in humans and frequent co-infection of mosquitoes. Parasitology, 2017, 144, 527-535.	1.5	16
56	Non-human primate malaria parasites: out of the forest and into the laboratory. Parasitology, 2018, 145, 41-54.	1.5	16
57	Genetic Diversity and Population Structure of Plasmodium falciparum in Lake Victoria Islands, A Region of Intense Transmission. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1077-1085.	1.4	15
58	Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes. PLoS Neglected Tropical Diseases, 2018, 12, e0006197.	3.0	15
59	The Role of Human Behavior in Plasmodium knowlesi Malaria Infection: A Systematic Review. International Journal of Environmental Research and Public Health, 2022, 19, 3675.	2.6	15
60	Plasmodium knowlesi: Clinical Presentation and Laboratory Diagnosis of the First Human Case in a Scottish Traveler. Journal of Travel Medicine, 2014, 21, 357-360.	3.0	14
61	Strainâ€specific immunity induced by immunization with preâ€erythrocytic stages of <i>Plasmodium chabaudi</i> . Parasite Immunology, 2011, 33, 73-78.	1.5	13
62	Plasmodium falciparum multidrug resistance gene- 1 polymorphisms in Northern Nigeria: implications for the continued use of artemether-lumefantrine in the region. Malaria Journal, 2020, 19, 439.	2.3	13
63	Detection of Plasmodium knowlesi DNA in the urine and faeces of a Japanese macaque (Macaca fuscata) over the course of an experimentally induced infection. Malaria Journal, 2014, 13, 373.	2.3	12
64	Congenital Malaria in China. PLoS Neglected Tropical Diseases, 2014, 8, e2622.	3.0	12
65	Plasmodium knowlesi: from severe zoonosis to animal model. Trends in Parasitology, 2015, 31, 232-238.	3.3	11
66	The Architectural Factor HMGB1 Is Involved in Genome Organization in the Human Malaria Parasite Plasmodium falciparum. MBio, 2021, 12, .	4.1	11
67	Reimagining zoonotic malaria control in communities exposed to Plasmodium knowlesi infection. Journal of Physiological Anthropology, 2022, 41, 14.	2.6	11
68	Plasmodium vinckei genomes provide insights into the pan-genome and evolution of rodent malaria parasites. BMC Biology, 2021, 19, 69.	3.8	10
69	Plasmodium vivax transmission-blocking vaccines: Progress, challenges and innovation. Parasitology International, 2022, 87, 102525.	1.3	10
70	Duffy Phenotype and Plasmodium vivaxinfections in Humans and Apes, Africa. Emerging Infectious Diseases, 2012, 18, 1704-1705.	4.3	9
71	Species-Specific Immunity Induced by Infection with Entamoeba histolytica and Entamoeba moshkovskii in Mice. PLoS ONE, 2013, 8, e82025.	2.5	9
72	5-methylcytosine modification by <i>Plasmodium</i> NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9

#	Article	IF	CITATIONS
73	The Toll-Like Receptor 2 agonist PEG-Pam2Cys as an immunochemoprophylactic and immunochemotherapeutic against the liver and transmission stages of malaria parasites. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 451-458.	3.4	8
74	A fast and cost-effective microsampling protocol incorporating reduced animal usage for time-series transcriptomics in rodent malaria parasites. Malaria Journal, 2019, 18, 26.	2.3	8
75	Malaria parasite genetics: doing something useful. Parasitology International, 2015, 64, 244-253.	1.3	7
76	Travellers as sentinels: Assaying the worldwide distribution of polymorphisms associated with artemisinin combination therapy resistance in Plasmodium falciparum using malaria cases imported into Scotland. International Journal for Parasitology, 2013, 43, 885-889.	3.1	6
77	Global distribution of polymorphisms associated with delayed Plasmodium falciparum parasite clearance following artemisinin treatment: Genotyping of archive blood samples. Parasitology International, 2015, 64, 267-273.	1.3	6
78	Detection of the Plasmodium falciparum Kelch-13 gene P553L mutation in sporozoites isolated from mosquito salivary glands in South-Central Vietnam. Parasites and Vectors, 2017, 10, 308.	2.5	6
79	Dynamics of Plasmodium falciparum Selection After Artemether-Lumefantrine Treatment in Africa. Journal of Infectious Diseases, 2012, 205, 1473-1475.	4.0	5
80	Vector sequence contamination of the Plasmodium vivax sequence database in PlasmoDB and In silico correction of 26 parasite sequences. Parasites and Vectors, 2015, 8, 318.	2.5	4
81	High incidence of asymptomatic cases during an outbreak of Plasmodium malariae in a remote village of Malaysian Borneo. PLoS Neglected Tropical Diseases, 2021, 15, e0009450.	3.0	4
82	Identification of polymorphisms in genes associated with drug resistance in Plasmodium falciparum isolates from school-age children in Kinshasa, Democratic Republic of Congo. Parasitology International, 2022, 88, 102541.	1.3	4
83	Low prevalence of Plasmodium falciparum parasites lacking pfhrp2/3 genes among asymptomatic and symptomatic school-age children in Kinshasa, Democratic Republic of Congo. Malaria Journal, 2022, 21, 126.	2.3	4
84	Exploring the key anthropological drivers of and barriers to zoonotic malaria preventative behaviour in a community exposed to <i>Plasmodium knowlesi</i> infection in Malaysia: protocol for a qualitative study with a participatory research design. BMJ Open, 2022, 12, e060866.	1.9	4
85	Positive diversifying selection on <i>Plasmodium vivax</i> RON2 protein. Parasitology, 2012, 139, 709-715.	1.5	3
86	Prevalence of Plasmodium falciparum isolates lacking the histidine rich protein 2 gene among symptomatic malaria patients in Kwilu Province of the Democratic Republic of Congo. Infectious Diseases of Poverty, 2021, 10, 77.	3.7	3
87	Protein trafficking in Plasmodium falciparum-infected red cells and impact of the expansion of exported protein families. Parasitology, 2014, 141, 1533-1543.	1.5	2
88	The African origin of <i>Plasmodium vivax</i> . FEMS Microbiology Reviews, 2022, 46, .	8.6	2
89	Intra-host dynamics of mixed species malaria parasite infections in mice and mosquitoes. Malaria Journal, 2010, 9, .	2.3	1
90	On Malaria Transmission and Transmission Blocking Immunity. American Journal of Tropical Medicine and Hygiene, 2022, 107, 3-16.	1.4	1

#	Article	IF	CITATIONS
91	Transmission-Blocking Vaccines: From Conceptualization to Realization. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	1
92	Complete abrogation of sporozoite-induced sterile immunity by blood stage parasites of homologous and heterologous malaria species. Malaria Journal, 2010, 9, .	2.3	0
93	Kazuyuki Tanabe: Malariology and music. Parasitology International, 2015, 64, xxi.	1.3	O
94	Does Nature and Nurture interaction influence child mental health? A preliminary study. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2014, 78, 1AM-2-022-1AM-2-022.	0.0	0
95	Professor Richard Carter (1945–2021). Trends in Parasitology, 2021, , .	3.3	O
96	Reduction in Plasmodium falciparum Pfk13 and pfg377 allele diversity through time in southern Vietnam. Tropical Medicine and Health, 2022, 50, 19.	2.8	0