Hiroshi Ikegami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824813/publications.pdf

Version: 2024-02-01

77 papers

3,118 citations

218381 26 h-index 54 g-index

78 all docs 78 docs citations

times ranked

78

4702 citing authors

#	Article	IF	CITATIONS
1	Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nature Genetics, 2012, 44, 67-72.	9.4	545
2	Pancreatic β Cell–specific Expression of  Thioredoxin, an Antioxidative and Antiapoptotic Protein, Prevents Autoimmune and Streptozotocin-induced Diabetes. Journal of Experimental Medicine, 1998, 188, 1445-1451.	4.2	233
3	Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes and Endocrinology,the, 2017, 5, 951-964.	5.5	228
4	Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute $\hat{\mathbf{a}} \in \mathbf{o}$ nset Type 1 Diabetes Mellitus: New diagnostic criteria of fulminant type 1 diabetes mellitus (2012). Journal of Diabetes Investigation, 2012, 3, 536-539.	1.1	187
5	Asian-Specific HLA Haplotypes Reveal Heterogeneity of the Contribution of HLA-DR and -DQ Haplotypes to Susceptibility to Type 1 Diabetes Diabetes, 2002, 51, 545-551.	0.3	170
6	Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): Association between a promoter polymorphism and type 1 diabetes in Asian populations. American Journal of Medical Genetics, Part A, 2006, 140A, 586-593.	0.7	141
7	Hyperglycemia in nonâ€obese patients with typeÂ2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus. Journal of Diabetes Investigation, 2019, 10, 1471-1479.	1.1	91
8	The Association of CTLA4Polymorphism with Type 1 Diabetes Is Concentrated in Patients Complicated with Autoimmune Thyroid Disease: A Multicenter Collaborative Study in Japan. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1087-1092.	1.8	85
9	Diagnostic criteria for acuteâ€onset type 1 diabetes mellitus (2012): Report of the <scp>C</scp> ommittee of <scp>J</scp> apan <scp>D</scp> iabetes <scp>S</scp> ociety on the <scp>R</scp> esearch of <scp>F</scp> ulminant and <scp>A</scp> cuteâ€ <scp>o</scp> nset <scp>T</scp> ype 1 <scp>D</scp> iabetes <scp>M</scp> ellitus, lournal of Diabetes Investigation, 2014, 5, 115-118.	1.1	82
10	Transgenic Expression of Antioxidant Protein Thioredoxin in Pancreatic $\langle i \rangle \hat{l}^2 \langle i \rangle$ Cells Prevents Progression of Type 2 Diabetes Mellitus. Antioxidants and Redox Signaling, 2008, 10, 43-50.	2.5	70
11	Genetics of Insulin-Dependent Diabetes Mellitus Endocrine Journal, 1996, 43, 605-613.	0.7	65
12	Characteristics and clinical course of type 1 diabetes mellitus related to anti-programmed cell death-1 therapy. Diabetology International, 2019, 10, 58-66.	0.7	65
13	Class II HLA genotype in fulminant type 1 diabetes: A nationwide survey with reference to glutamic acid decarboxylase antibodies. Journal of Diabetes Investigation, 2012, 3, 62-69.	1.1	63
14	Type 1 Diabetes and Interferon Therapy. Diabetes Care, 2011, 34, 2084-2089.	4.3	59
15	Genetic Heterogeneity in Association of the SUMO4 M55V Variant With Susceptibility to Type 1 Diabetes. Diabetes, 2005, 54, 3582-3586.	0.3	52
16	Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Research and Clinical Practice, 2007, 77, S116-S121.	1.1	51
17	Glycemic Control and Insulin Improve Muscle Mass and Gait Speed in Type 2 Diabetes: The MUSCLES-DM Study. Journal of the American Medical Directors Association, 2021, 22, 834-838.e1.	1.2	48
18	Genetics of Type 1 Diabetes: Similarities and Differences between Asian and Caucasian Populations. Annals of the New York Academy of Sciences, 2006, 1079, 51-59.	1.8	45

#	Article	IF	CITATIONS
19	Clinical and genetic characteristics of patients with autoimmune thyroid disease with anti-islet autoimmunity. Metabolism: Clinical and Experimental, 2011, 60, 761-766.	1.5	40
20	Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet. Endocrine Journal, 2013, 60, 261-274.	0.7	40
21	Evidence for the Role of Small Ubiquitin-Like Modifier 4 as a General Autoimmunity Locus in the Japanese Population. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3138-3143.	1.8	35
22	Mouse Models of Type 1 and Type 2 Diabetes Derived from the Same Closed Colony: Genetic Susceptibility Shared Between Two Types of Diabetes. ILAR Journal, 2004, 45, 268-277.	1.8	34
23	Insulin Gene/IDDM2Locus in Japanese Type 1 Diabetes: Contribution of Class I Alleles and Influence of Class I Subdivision in Susceptibility to Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1791-1795.	1.8	31
24	Effects of dosage and dosing frequency on the efficacy and safety of highâ€dose metformin in Japanese patients with type 2 diabetes mellitus. Journal of Diabetes Investigation, 2018, 9, 587-593.	1.1	31
25	Genome-Wide Association Study Confirming a Strong Effect of HLA and Identifying Variants in <i>CSAD/Inc-ITGB7-1</i> on Chromosome 12q13.13 Associated With Susceptibility to Fulminant Type 1 Diabetes. Diabetes, 2019, 68, 665-675.	0.3	31
26	Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Research and Care, 2020, 8, e000902.	1.2	31
27	Association of Small Ubiquitin-Like Modifier 4 (SUMO4) Variant, Located in IDDM5 Locus, with Type 2 Diabetes in the Japanese Population. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2358-2362.	1.8	29
28	Genetic Basis of Type 1 Diabetes: Similarities and Differences between East and West. Review of Diabetic Studies, 2008, 5, 64-72.	0.5	29
29	βâ€Cell failure in diabetes: Common susceptibility and mechanisms shared between typeÂ1 and typeÂ2 diabetes. Journal of Diabetes Investigation, 2021, 12, 1526-1539.	1.1	27
30	Food hardness as environmental factor in development of type 2 diabetes. Diabetes Research and Clinical Practice, 2006, 74, 1-7.	1.1	26
31	Insulin Transactivator MafA Regulates Intrathymic Expression of Insulin and Affects Susceptibility to Type 1 Diabetes. Diabetes, 2010, 59, 2579-2587.	0.3	26
32	Organ Specificity in Autoimmune Diseases: Thyroid and Islet Autoimmunity in Alopecia Areata. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1976-1983.	1.8	25
33	Genetic Association between the Interleukin-2 Receptor- $\hat{l}\pm$ Gene and Mode of Onset of Type 1 Diabetes in the Japanese Population. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 947-952.	1.8	24
34	Susceptibility to streptozotocin-induced diabetes is mapped to mouse chromosome 11. Biochemical and Biophysical Research Communications, 2005, 328, 158-164.	1.0	23
35	Insulin deficiency with and without glucagon: A comparative study between total pancreatectomy and type 1 diabetes. Journal of Diabetes Investigation, 2018, 9, 1084-1090.	1.1	23
36	Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus: New Diagnostic Criteria of Fulminant Type 1 Diabetes Mellitus (2012). Diabetology International, 2012, 3, 179-183.	0.7	20

#	Article	IF	Citations
37	Fulminant type 1 diabetes associated with Isolated ACTH deficiency induced by anti-programmed cell death 1 antibody—insight into the pathogenesis of autoimmune endocrinopathy—. Endocrine Journal, 2019, 66, 295-300.	0.7	20
38	Relationship of continuous glucose monitoring-related metrics with HbA1c and residual \hat{l}^2 -cell function in Japanese patients with type 1 diabetes. Scientific Reports, 2021, 11, 4006.	1.6	18
39	Insulin secretion to glucose as well as nonglucose stimuli is impaired in spontaneously diabetic Nagoya-Shibata-Yasuda mice. Metabolism: Clinical and Experimental, 2001, 50, 1282-1285.	1.5	17
40	Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. Journal of Diabetes Investigation, 2011, 2, 415-420.	1.1	17
41	Efficacy and safety of metformin for treatment of type 2 diabetes in elderly Japanese patients. Geriatrics and Gerontology International, 2011, 11, 55-62.	0.7	17
42	A low-frequency GLIS3 variant associated with resistance to Japanese type 1 diabetes. Biochemical and Biophysical Research Communications, 2013, 437, 521-525.	1.0	17
43	Insulin Gene Region Contributes to Genetic Susceptibility to, but May Not to Low Incidence of, Insulin-Dependent Diabetes Mellitus in Japanese. Biochemical and Biophysical Research Communications, 1997, 233, 283-287.	1.0	16
44	Trinucleotide repeats of programmed cell death-1 gene are associated with susceptibility to type 1 diabetes mellitus. Metabolism: Clinical and Experimental, 2007, 56, 905-909.	1.5	14
45	Paternal-maternal effects on phenotypic characteristics in spontaneously diabetic Nagoya-Shibata-Yasuda mice. Metabolism: Clinical and Experimental, 2000, 49, 651-656.	1.5	13
46	Immune checkpoint therapy and type 1 diabetes. Diabetology International, 2016, 7, 221-227.	0.7	12
47	Glucose Metabolism After Pancreatectomy: Opposite Extremes Between Pancreaticoduodenectomy and Distal Pancreatectomy. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2203-e2214.	1.8	12
48	Genetics of fulminant type 1 diabetes. Diabetology International, 2020, 11, 315-322.	0.7	10
49	Molecular Scanning of the Gene for Thioredoxin, an Antioxidative and Antiapoptotic Protein, and Genetic Susceptibility to Type 1 Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 103-105.	1.8	9
50	Flash glucose monitoring in typeÂ1 diabetes: A comparison with selfâ€monitoring blood glucose. Journal of Diabetes Investigation, 2020, 11, 1222-1229.	1.1	9
51	Mapping and promoter sequencing of HNF- $1\hat{l}^2$ gene in diabetes-prone and -resistant mice. Diabetes Research and Clinical Practice, 2001, 53, 67-71.	1.1	8
52	Common genetic basis between type 1 and type 2 diabetes mellitus indicated by interview-based assessment of family history. Diabetes Research and Clinical Practice, 2004, 66, S91-S95.	1.1	8
53	Insulinâ€dependent diabetes mellitus in older adults: Current status and future prospects. Geriatrics and Gerontology International, 2022, 22, 549-553.	0.7	8
54	Clinical and genetic analysis in a family with familial renal glucosuria: Identification of an N101K mutation in the sodium–glucose cotransporterÂ2 encoded by a solute carrier familyÂ5 memberÂ2 gene. Journal of Diabetes Investigation, 2020, 11, 573-577.	1.1	7

#	Article	IF	CITATIONS
55	Poor glycemic control rather than types of diabetes is a risk factor for sarcopenia in diabetes mellitus: The <scp>MUSCLESâ€DM</scp> study. Journal of Diabetes Investigation, 2022, 13, 1881-1888.	1.1	7
56	Sequence Analysis of Candidate Genes for Common Susceptibility to Type 1 and Type 2 Diabetes in Mice Endocrine Journal, 2001, 48, 241-247.	0.7	6
57	Genetic dissection of susceptibility genes for diabetes and related phenotypes on mouse chromosome 14 by means of congenic strains. BMC Genetics, 2014, 15, 93.	2.7	6
58	Common phenotype and different non-HLA genes in Graves' disease and alopecia areata. Human Immunology, 2017, 78, 185-189.	1,2	6
59	Contribution of Asian Haplotype of KCNJ18 to Susceptibility to and Ethnic Differences in Thyrotoxic Periodic Paralysis. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6338-6344.	1.8	6
60	The Onset of Diabetes in Three out of Four Sisters: A Japanese Family with Type 1 Diabetes. A Case Report. Endocrine Journal, 2009, 56, 767-772.	0.7	5
61	Case report: schwannoma arising from the unilateral adrenal area with bilateral hyperaldosteronism. BMC Endocrine Disorders, 2017, 17, 74.	0.9	5
62	Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. Mammalian Genome, 2018, 29, 273-280.	1.0	5
63	Clinical and genetic determinants of urinary glucose excretion in patients with diabetes mellitus. Journal of Diabetes Investigation, 2021, 12, 728-737.	1.1	5
64	Associations between genetic loci related to lean mass and body composition in type 2 diabetes. Geriatrics and Gerontology International, 2021, 21, 932-938.	0.7	5
65	Dose Effect and Mode of Inheritance of Diabetogenic Gene on Mouse Chromosome 11. Journal of Diabetes Research, 2013, 2013, 1-6.	1.0	4
66	Japanese Type 1 Diabetes Database Study (TIDE-J): rationale and study design. Diabetology International, 2022, 13, 288-294.	0.7	4
67	Oncocytic Adrenocortical Carcinoma With Low 18F-FDG Uptake and the Absence of Glucose Transporter 1 Expression. Journal of the Endocrine Society, 2021, 5, bvab143.	0.1	3
68	A Rare Case of Adrenal Cysts Associated With Bilateral Incidentalomas and Diffuse Hyperplasia of the Zona Glomerulosa. Journal of the Endocrine Society, 2021, 5, bvaa184.	0.1	3
69	Rare human leukocyte antigen genotype in two siblings with type 1 diabetes in a Japanese family clustered with type 1 diabetes. Journal of Diabetes Investigation, 2017, 8 , $762-765$.	1.1	2
70	Verification That Mouse Chromosome 14 Is Responsible for Susceptibility to Streptozotocin in NSY Mice. International Journal of Endocrinology, 2018, 2018, 1-7.	0.6	2
71	Type 2 diabetes susceptibility genes on mouse chromosome 11 under high sucrose environment. BMC Genetics, 2020, 21, 81.	2.7	2
72	Mixed Corticomedullary Tumor Accompanied by Unilateral Aldosterone-Producing Adrenocortical Micronodules: A Case Report. Journal of the Endocrine Society, 2021, 5, bvab140.	0.1	2

#	Article	IF	CITATIONS
73	Prolonged hyperinsulinemia after subcutaneous injection of $2400 \hat{a} \in fU$ regular insulin in a suicide attempt: Time course of serum insulin with frequent measurements. Journal of Diabetes Investigation, 2012, 3, 468-470.	1.1	1
74	Twenty years since the discovery of fulminant type 1 diabetes. Diabetology International, 2020, 11 , 309-309.	0.7	1
75	Benefit of Early Add-on of Linagliptin to Insulin in Japanese Patients With Type 2 Diabetes Mellitus: Randomized-Controlled Open-Label Trial (TRUST2). Advances in Therapy, 2021, 38, 1514-1535.	1.3	1
76	Fulminant type 1 diabetes: nationwide effort to elucidate genetics, etiology, and pathogenesis since 2000. Diabetology International, 2020, 11 , $342-343$.	0.7	0
77	13. Pathogenesis and Treatment of Type 1 Diabetes, Update 2019. The Journal of the Japanese Society of Internal Medicine, 2019, 108, 1946-1953.	0.0	O