Lincai Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumor Biology, 2015, 36, 9179-9188.	1.8	101
2	Engineering cartilage tissue based on cartilage-derived extracellular matrix cECM/PCL hybrid nanofibrous scaffold. Materials and Design, 2020, 193, 108773.	7.0	50
3	GSK-3β Inhibitor CHIR-99021 Promotes Proliferation Through Upregulating β-Catenin in Neonatal Atrial Human Cardiomyocytes. Journal of Cardiovascular Pharmacology, 2016, 68, 425-432.	1.9	32
4	Effects of hypoxia on cardiomyocyte proliferation and association with stage of development. Biomedicine and Pharmacotherapy, 2019, 118, 109391.	5.6	22
5	Role of Blood Oxygen Saturation During Post-Natal Human Cardiomyocyte Cell Cycle Activities. JACC Basic To Translational Science, 2020, 5, 447-460.	4.1	22
6	Pressure Overload Greatly Promotes Neonatal Right Ventricular Cardiomyocyte Proliferation: A New Model for the Study of Heart Regeneration. Journal of the American Heart Association, 2020, 9, e015574.	3.7	21
7	Cardiomyocytes in Young Infants With Congenital Heart Disease: a Three-Month Window of Proliferation. Scientific Reports, 2016, 6, 23188.	3.3	20
8	A neonatal rat model of increased right ventricular afterload by pulmonary artery banding. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1734-1739.	0.8	19
9	Label-free quantitative proteomic analysis of right ventricular remodeling in infant Tetralogy of Fallot patients. Journal of Proteomics, 2013, 84, 78-91.	2.4	18
10	Postsurgical Comparison of Pulsatile Hemodynamics in Five Unique Total Cavopulmonary Connections: Identifying Ideal Connection Strategies. Annals of Thoracic Surgery, 2013, 96, 1398-1404.	1.3	12
11	Decreased Yes-Associated Protein-1 (YAP1) Expression in Pediatric Hearts with Ventricular Septal Defects. PLoS ONE, 2015, 10, e0139712.	2.5	12
12	A gain-of-function ACTC1 3′UTR mutation that introduces a miR-139-5p target site may be associated with a dominant familial atrial septal defect. Scientific Reports, 2016, 6, 25404.	3.3	12
13	Geranylgeranylacetone attenuates myocardium ischemic/reperfusion injury through HSP70 and Akt/GSK-31²/eNOS pathway. American Journal of Translational Research (discontinued), 2017, 9, 386-395.	0.0	11
14	Dexmedetomidine Protects Human Cardiomyocytes Against Ischemia-Reperfusion Injury Through α2-Adrenergic Receptor/AMPK-Dependent Autophagy. Frontiers in Pharmacology, 2021, 12, 615424.	3.5	9
15	Postnatal Right Ventricular Developmental Track Changed by Volume Overload. Journal of the American Heart Association, 2021, 10, e020854.	3.7	8
16	Hypoxiaâ€induced ARHGAP26 deficiency inhibits the proliferation and migration of human ductus arteriosus smooth muscle cell through activating RhoAâ€ROCKâ€PTEN pathway. Journal of Cellular Biochemistry, 2019, 120, 10106-10117.	2.6	7
17	Age-Dependent Oxidative DNA Damage Does Not Correlate with Reduced Proliferation of Cardiomyocytes in Humans. PLoS ONE, 2017, 12, e0170351.	2.5	7
18	Volume Overload Initiates an Immune Response in the Right Ventricle at the Neonatal Stage. Frontiers in Cardiovascular Medicine, 2021, 8, 772336.	2.4	7

Lincai Ye

#	Article	IF	CITATIONS
19	Over-expression of HSPA12B protects mice against myocardium ischemic/reperfusion injury through a PPARÎ ³ -dependent PI3K/Akt/eNOS pathway. American Journal of Translational Research (discontinued), 2015, 7, 2724-37.	0.0	6
20	The Role of Na+/Ca2+ Exchanger 1 in Maintaining Ductus Arteriosus Patency. Scientific Reports, 2017, 7, 9826.	3.3	5
21	Downregulated developmental processes in the postnatal right ventricle under the influence of a volume overload. Cell Death Discovery, 2021, 7, 208.	4.7	4
22	Molecular Changes in Prepubertal Left Ventricular Development Under Experimental Volume Overload. Frontiers in Cardiovascular Medicine, 2022, 9, 850248.	2.4	4
23	Hypoxiaâ€induced cytosolic calcium influx is mediated primarily by the reverse mode of <scp>N</scp> a ⁺ / <scp>C</scp> a ²⁺ exchanger in smooth muscle cells of fetal small pulmonary arteries. Journal of Obstetrics and Gynaecology Research, 2014, 40, 1578-1583.	1.3	3
24	Isobaric Tags for Relative and Absolute Quantitation–Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure. Journal of Cardiovascular Pharmacology, 2015, 66, 204-213.	1.9	3
25	Elevated NCX1 and NCKX4 Expression in the Patent Postnatal Ductus Arteriosus of Ductal-Dependent Congenital Heart Disease Patients. Pediatric Cardiology, 2015, 36, 743-751.	1.3	3
26	Metabolic maturation during postnatal right ventricular development switches to heart-contraction regulation due to volume overload. Journal of Cardiology, 2021, 79, 110-120.	1.9	2
27	Proliferation of cardiomyocytes in young infants, future implication in human heart regeneration. IFMBE Proceedings, 2015, , 276-283.	0.3	0