Massimiliano Zaniboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824701/publications.pdf

Version: 2024-02-01

29 papers

771 citations

16 h-index 28 g-index

29 all docs

29 docs citations

times ranked

29

1047 citing authors

#	Article	lF	CITATIONS
1	Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate. Biomolecules, 2022, 12, 873.	4.0	2
2	Cobalt oxide nanoparticles induce oxidative stress and alter electromechanical function in rat ventricular myocytes. Particle and Fibre Toxicology, 2021, 18, 1.	6.2	21
3	Restitution and adaptation measurements for the estimate of short-term cardiac action potential memory: comparison of five human ventricular models. Europace, 2019, 21, 1594-1602.	1.7	4
4	Restitution and Stability of Human Ventricular Action Potential at High and Variable Pacing Rate. Biophysical Journal, 2019, 117, 2382-2395.	0.5	5
5	Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing. PLoS ONE, 2018, 13, e0193416.	2.5	10
6	Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol. Nutrients, 2016, 8, 729.	4.1	14
7	Chronotropic Modulation of the Source-Sink Relationship of Sinoatrial-Atrial Impulse Conduction and Its Significance to Initiation of AF: A One-Dimensional Model Study. BioMed Research International, 2015, 2015, 1-18.	1.9	4
8	A protocol combining current- and voltage-clamp provides a novel and useful three-dimensional representation of cardiac action potential. Journal of Biological Research (Italy), 2014, 87, .	0.1	O
9	Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Particle and Fibre Toxicology, 2014, 11, 63.	6.2	76
10	Instantaneous current–voltage relationships during the course of the human cardiac ventricular action potential: new computational insights into repolarization dynamics. Europace, 2014, 16, 774-784.	1.7	1
11	Beat-to-Beat Cycle Length Variability of Spontaneously Beating Guinea Pig Sinoatrial Cells: Relative Contributions of the Membrane and Calcium Clocks. PLoS ONE, 2014, 9, e100242.	2.5	20
12	Late Phase of Repolarization is Autoregenerative and Scales Linearly with Action Potential Duration in Mammals Ventricular Myocytes: A Model Study. IEEE Transactions on Biomedical Engineering, 2012, 59, 226-233.	4.2	9
13	Heterogeneity of Intrinsic Repolarization Properties Within the Human Heart: New Insights From Simulated Three-Dimensional Current Surfaces. IEEE Transactions on Biomedical Engineering, 2012, 59, 2372-2380.	4.2	5
14	3D current–voltage–time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Mathematical Biosciences, 2011, 233, 98-110.	1.9	20
15	Bronchodilator Activity of (3 <i>R</i>)-3-[[[(3-fluorophenyl)[(3,4,5-trifluorophenyl)methyl]amino] carbonyl]oxy]-1-[2-oxo-2-(2-thienyl)ethyl]-1-azoniabicyclo[2.2.2]octane bromide (CHF5407), a Potent, Long-Acting, and Selective Muscarinic M3 Receptor Antagonist. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 622-635.	2.5	27
16	How different two almost identical action potentials can be: A model study on cardiac repolarization. Mathematical Biosciences, 2010, 228, 56-70.	1.9	36
17	Temporal variability of repolarization in rat ventricular myocytes paced with time-varying frequencies. Experimental Physiology, 2007, 92, 859-869.	2.0	25
18	Effects of the ??2-Adrenergic/DA2-Dopaminergic Agonist CHF-1024 in Preventing Ventricular Arrhythmogenesis and Myocyte Electrical Remodeling, in a Rat Model of Pressure-Overload Cardiac Hypertrophy. Journal of Cardiovascular Pharmacology, 2006, 47, 295-302.	1.9	6

#	Article	IF	CITATIONS
19	Cell-to-Cell Electrical Interactions During Early and Late Repolarization. Journal of Cardiovascular Electrophysiology, 2006, 17, S8-S14.	1.7	44
20	Correlation of α-skeletal actin expression, ventricular fibrosis and heart function with the degree of pressure overload cardiac hypertrophy in rats. Experimental Physiology, 2006, 91, 571-580.	2.0	36
21	Effect of Input Resistance Voltage-Dependency on DC Estimate of Membrane Capacitance in Cardiac Myocytes. Biophysical Journal, 2005, 89, 2170-2181.	0.5	18
22	Vulnerability to ventricular arrhthmias and heterogeneity of action potential duration in normal rats. Experimental Physiology, 2004, 89, 387-396.	2.0	6
23	Modelling intracellular H+ ion diffusion. Progress in Biophysics and Molecular Biology, 2003, 83, 69-100.	2.9	55
24	Intracellular proton mobility and buffering power in cardiac ventricular myocytes from rat, rabbit, and guinea pig. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1236-H1246.	3.2	51
25	Proton Permeation Through the Myocardial Gap Junction. Circulation Research, 2003, 93, 726-735.	4.5	30
26	Myocardial remodeling and arrhythmogenesis in moderate cardiac hypertrophy in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H142-H150.	3.2	44
27	Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H677-H687.	3.2	148
28	Complications Associated with Rapid Caffeine Application to Cardiac Myocytes that are not Voltage Clamped. Journal of Molecular and Cellular Cardiology, 1998, 30, 2229-2235.	1.9	10
29	The restriction of diffusion of cations at the external surface of cardiac myocytes varies between species. Cell Calcium, 1997, 22, 431-438.	2.4	44