Edward M Marcotte

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1824676/edward-m-marcotte-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 21,585 145 214 h-index g-index citations papers 270 25,794 7.01 13.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
214	Understudied proteins: opportunities and challenges for functional proteomics <i>Nature Methods</i> , 2022 ,	21.6	6
213	An open invitation to the Understudied Proteins Initiative Nature Biotechnology, 2022,	44.5	2
212	ARVCF catenin controls force production during vertebrate convergent extension <i>Developmental Cell</i> , 2022 ,	10.2	1
211	Photoredox-Catalyzed Decarboxylative -Terminal Differentiation for Bulk- and Single-Molecule Proteomics. <i>ACS Chemical Biology</i> , 2021 , 16, 2595-2603	4.9	0
210	Improving integrative 3D modeling into low- to medium-resolution electron microscopy structures with evolutionary couplings. <i>Protein Science</i> , 2021 , 30, 1006-1021	6.3	1
209	Synthetic repertoires derived from convalescent COVID-19 patients enable discovery of SARS-CoV-2 neutralizing antibodies and a novel quaternary binding modality 2021 ,		4
208	hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. <i>Molecular Systems Biology</i> , 2021 , 17, e10016	12.2	11
207	The emerging landscape of single-molecule protein sequencing technologies. <i>Nature Methods</i> , 2021 , 18, 604-617	21.6	60
206	Simplified geometric representations of protein structures identify complementary interaction interfaces. <i>Proteins: Structure, Function and Bioinformatics</i> , 2021 , 89, 348-360	4.2	5
205	Systematic Identification of Protein Phosphorylation-Mediated Interactions. <i>Journal of Proteome Research</i> , 2021 , 20, 1359-1370	5.6	5
204	Co-fractionation/mass spectrometry to identify protein complexes. STAR Protocols, 2021 , 2, 100370	1.4	2
203	Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast. <i>Genetics</i> , 2021 , 219,	4	1
202	Twinfilin1 controls lamellipodial protrusive activity and actin turnover during vertebrate gastrulation. <i>Journal of Cell Science</i> , 2021 , 134,	5.3	3
201	Spatiotemporal transcriptional dynamics of the cycling mouse oviduct. <i>Developmental Biology</i> , 2021 , 476, 240-248	3.1	0
200	Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks <i>PLoS ONE</i> , 2021 , 16, e0262056	3.7	O
199	Studies of Surface Preparation for the Fluorosequencing of Peptides <i>Langmuir</i> , 2021 , 37, 14856-14865	; 4	О
198	A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. <i>Developmental Biology</i> , 2020 , 467, 108-117	3.1	11

(2018-2020)

197	Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics. <i>ACS Chemical Biology</i> , 2020 , 15, 1401-1407	4.9	6
196	Humanization of yeast genes with multiple human orthologs reveals functional divergence between paralogs. <i>PLoS Biology</i> , 2020 , 18, e3000627	9.7	10
195	Next-Generation TLC: A Quantitative Platform for Parallel Spotting and Imaging. <i>Journal of Organic Chemistry</i> , 2020 , 85, 9447-9453	4.2	4
194	Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. <i>Molecular Biology of the Cell</i> , 2020 , 31, 1069-1084	3.5	10
193	A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. <i>Cell</i> , 2020 , 181, 460-474.e14	56.2	59
192	Structural Biology in the Multi-Omics Era. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 2424-	2429	8
191	Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. <i>ELife</i> , 2020 , 9,	8.9	11
190	Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. Journal of Structural Biology, 2020 , 209, 107416	3.4	10
189	Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access. <i>Organic Letters</i> , 2020 , 22, 381-385	6.2	2
188	Systematic Humanization of the Yeast Cytoskeleton Discerns Functionally Replaceable from Divergent Human Genes. <i>Genetics</i> , 2020 , 215, 1153-1169	4	3
187	Bringing Microscopy-By-Sequencing into View. <i>Trends in Biotechnology</i> , 2020 , 38, 154-162	15.1	2
186	Ancestral reconstruction of protein interaction networks. <i>PLoS Computational Biology</i> , 2019 , 15, e10073	396	7
185	Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. <i>Cell Reports</i> , 2019 , 29, 135	1±16 36 8	.e <u>5</u> į
184	Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. <i>Genes and Development</i> , 2019 , 33, 1751-1774	12.6	47
183	The Many Nuanced Evolutionary Consequences of Duplicated Genes. <i>Molecular Biology and Evolution</i> , 2019 , 36, 304-314	8.3	13
182	HumanNet v2: human gene networks for disease research. <i>Nucleic Acids Research</i> , 2019 , 47, D573-D580	20.1	77
181	Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. <i>Nature</i> , 2018 , 553, 337-341	50.4	35
180	Classification of Single Particles from Human Cell Extract Reveals Distinct Structures. <i>Cell Reports</i> , 2018 , 24, 259-268.e3	10.6	22

179	Protein localization screening reveals novel regulators of multiciliated cell development and function. <i>Journal of Cell Science</i> , 2018 , 131,	5.3	15
178	A liquid-like organelle at the root of motile ciliopathy. <i>ELife</i> , 2018 , 7,	8.9	36
177	A highly parallel strategy for storage of digital information in living cells. <i>BMC Biotechnology</i> , 2018 , 18, 64	3.5	7
176	Withdrawn as Duplicate: The many nuanced evolutionary consequences of duplicated genes. <i>Molecular Biology and Evolution</i> , 2018 , 35, e1	8.3	1
175	Single-step Precision Genome Editing in Yeast Using CRISPR-Cas9. <i>Bio-protocol</i> , 2018 , 8,	0.9	17
174	Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. <i>Nature Biotechnology</i> , 2018 ,	44.5	82
173	Photography Coupled with Self-Propagating Chemical Cascades: Differentiation and Quantitation of G- and V-Nerve Agent Mimics via Chromaticity. <i>ACS Central Science</i> , 2018 , 4, 854-861	16.8	20
172	Murine Cytomegalovirus Deubiquitinase Regulates Viral Chemokine Levels To Control Inflammation and Pathogenesis. <i>MBio</i> , 2017 , 8,	7.8	11
171	Comprehensive de Novo Peptide Sequencing from MS/MS Pairs Generated through Complementary Collision Induced Dissociation and 351 nm Ultraviolet Photodissociation. <i>Analytical Chemistry</i> , 2017 , 89, 3747-3753	7.8	11
170	Predictability of Genetic Interactions from Functional Gene Modules. <i>G3: Genes, Genomes, Genetics</i> , 2017 , 7, 617-624	3.2	7
169	WheatNet: a Genome-Scale Functional Network for Hexaploid Bread Wheat, Triticum aestivum. <i>Molecular Plant</i> , 2017 , 10, 1133-1136	14.4	12
168	The E. coli molecular phenotype under different growth conditions. <i>Scientific Reports</i> , 2017 , 7, 45303	4.9	18
167	GWAB: a web server for the network-based boosting of human genome-wide association data. <i>Nucleic Acids Research</i> , 2017 , 45, W154-W161	20.1	19
166	Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing. <i>New Journal of Chemistry</i> , 2017 , 41, 462-469	3.6	11
165	Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. <i>Molecular Systems Biology</i> , 2017 , 13, 932	12.2	111
164	Systems-wide Studies Uncover Commander, a Multiprotein Complex Essential to Human Development. <i>Cell Systems</i> , 2017 , 4, 483-494	10.6	23
163	Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. <i>Nature Microbiology</i> , 2017 , 2, 1493-1499	26.6	67
162	Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. <i>BMC Genomics</i> , 2017 , 18, 301	4.5	26

(2015-2017)

161	Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. <i>PLoS Computational Biology</i> , 2017 , 13, e1005625	5	15
160	Systematic bacterialization of yeast genes identifies a near-universally swappable pathway. <i>ELife</i> , 2017 , 6,	8.9	14
159	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. <i>Nature Medicine</i> , 2016 , 22, 1456-1464	50.5	186
158	Genome evolution in the allotetraploid frog Xenopus laevis. <i>Nature</i> , 2016 , 538, 336-343	50.4	510
157	Efforts to make and apply humanized yeast. <i>Briefings in Functional Genomics</i> , 2016 , 15, 155-63	4.9	48
156	UVnovo: A de Novo Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry. <i>Analytical Chemistry</i> , 2016 , 88, 3990-7	7.8	24
155	Temporal stability and molecular persistence of the bone marrow plasma cell antibody repertoire. <i>Nature Communications</i> , 2016 , 7, 13838	17.4	9
154	Sperm is epigenetically programmed to regulate gene transcription in embryos. <i>Genome Research</i> , 2016 , 26, 1034-46	9.7	84
153	Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes. <i>Data in Brief</i> , 2016 , 6, 715-21	1.2	5
152	Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer. <i>Bioinformatics</i> , 2016 , 32, 1373-9	7.2	9
151	MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates. <i>Nucleic Acids Research</i> , 2016 , 44, D848-54	20.1	31
150	The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. <i>Nature Genetics</i> , 2016 , 48, 648-56	36.3	78
149	Towards Consensus Gene Ages. <i>Genome Biology and Evolution</i> , 2016 , 8, 1812-23	3.9	50
148	A theoretical justification for single molecule peptide sequencing. <i>PLoS Computational Biology</i> , 2015 , 11, e1004080	5	38
147	The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. <i>PLoS Biology</i> , 2015 , 13, e1002083	9.7	49
146	Applications of comparative evolution to human disease genetics. <i>Current Opinion in Genetics and Development</i> , 2015 , 35, 16-24	4.9	6
145	Panorama of ancient metazoan macromolecular complexes. <i>Nature</i> , 2015 , 525, 339-44	50.4	325
144	Systematic comparison of variant calling pipelines using gold standard personal exome variants. <i>Scientific Reports</i> , 2015 , 5, 17875	4.9	2 00

143	Modes of interaction between individuals dominate the topologies of real world networks. <i>PLoS ONE</i> , 2015 , 10, e0121248	3.7	3
142	Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. <i>Science</i> , 2015 , 348, 921-5	33.3	227
141	Long-term neural and physiological phenotyping of a single human. <i>Nature Communications</i> , 2015 , 6, 8885	17.4	237
140	Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa. <i>MBio</i> , 2015 , 6, e01603-15	7.8	53
139	Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation. <i>PLoS Computational Biology</i> , 2015 , 11, e1004400	o ⁵	27
138	Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. <i>Nature Chemical Biology</i> , 2014 , 10, 178-80	11.7	39
137	A proteomic survey of widespread protein aggregation in yeast. <i>Molecular BioSystems</i> , 2014 , 10, 851-86	1	40
136	Lanthanide nano-drums: a new class of molecular nanoparticles for potential biomedical applications. <i>Faraday Discussions</i> , 2014 , 175, 241-55	3.6	5
135	Revisiting and revising the purinosome. <i>Molecular BioSystems</i> , 2014 , 10, 369-74		16
134	Yeast cells expressing the human mitochondrial DNA polymerase reveal correlations between polymerase fidelity and human disease progression. <i>Journal of Biological Chemistry</i> , 2014 , 289, 5970-85	5.4	13
133	Protein-to-mRNA ratios are conserved between Pseudomonas aeruginosa strains. <i>Journal of Proteome Research</i> , 2014 , 13, 2370-80	5.6	17
132	Identifying direct targets of transcription factor Rfx2 that coordinate ciliogenesis and cell movement. <i>Genomics Data</i> , 2014 , 2, 192-194		10
131	Statistical approach to protein quantification. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 666-77	7.6	23
130	Proteomic identification of monoclonal antibodies from serum. <i>Analytical Chemistry</i> , 2014 , 86, 4758-66	7.8	48
129	Identification and characterization of the constituent human serum antibodies elicited by vaccination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2259-64	11.5	176
128	MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network. <i>Nucleic Acids Research</i> , 2014 , 42, W147-53	20.1	13
127	Coordinated genomic control of ciliogenesis and cell movement by RFX2. <i>ELife</i> , 2014 , 3, e01439	8.9	88
126	ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS. <i>Journal of Proteomics</i> , 2013 , 81, 102-11	3.9	14

125	Prediction of gene-phenotype associations in humans, mice, and plants using phenologs. <i>BMC Bioinformatics</i> , 2013 , 14, 203	3.6	27
124	Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation. <i>Journal of Bacteriology</i> , 2013 , 195, 213-9	3.5	76
123	The proteomic response to mutants of the Escherichia coli RNA degradosome. <i>Molecular BioSystems</i> , 2013 , 9, 750-7		8
122	A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription factor, the myelin regulatory factor MYRF. <i>PLoS Biology</i> , 2013 , 11, e1001624	9.7	38
121	Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2993-8	11.5	107
120	Transiently transfected purine biosynthetic enzymes form stress bodies. <i>PLoS ONE</i> , 2013 , 8, e56203	3.7	10
119	Prediction and validation of gene-disease associations using methods inspired by social network analyses. <i>PLoS ONE</i> , 2013 , 8, e58977	3.7	84
118	Pseudomonas aeruginosa enhances production of a non-alginate exopolysaccharide during long-term colonization of the cystic fibrosis lung. <i>PLoS ONE</i> , 2013 , 8, e82621	3.7	27
117	RFX2 is broadly required for ciliogenesis during vertebrate development. <i>Developmental Biology</i> , 2012 , 363, 155-65	3.1	78
116	Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry. <i>Molecular Systems Biology</i> , 2012 , 8, 573	12.2	16
115	A census of human soluble protein complexes. <i>Cell</i> , 2012 , 150, 1068-81	56.2	612
114	Id2a functions to limit Notch pathway activity and thereby influence the transition from proliferation to differentiation of retinoblasts during zebrafish retinogenesis. <i>Developmental Biology</i> , 2012 , 371, 280-92	3.1	17
113	Label-free protein quantitation using weighted spectral counting. <i>Methods in Molecular Biology</i> , 2012 , 893, 321-41	1.4	21
112	Dynamic reorganization of metabolic enzymes into intracellular bodies. <i>Annual Review of Cell and Developmental Biology</i> , 2012 , 28, 89-111	12.6	105
111	Flaws in evaluation schemes for pair-input computational predictions. <i>Nature Methods</i> , 2012 , 9, 1134-6	21.6	107
110	RIDDLE: reflective diffusion and local extension reveal functional associations for unannotated gene sets via proximity in a gene network. <i>Genome Biology</i> , 2012 , 13, R125	18.3	15
109	Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. <i>Nature Reviews Genetics</i> , 2012 , 13, 227-32	30.1	2365
108	Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. <i>PLoS Biology</i> , 2012 , 10, e1001379	9.7	38

107	Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network. <i>Nature Protocols</i> , 2011 , 6, 1429-42	18.8	38
106	A role for central spindle proteins in cilia structure and function. <i>Cytoskeleton</i> , 2011 , 68, 112-24	2.4	27
105	MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines. <i>Journal of Proteome Research</i> , 2011 , 10, 2949-58	5.6	70
104	Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18548-53	11.5	132
103	Revisiting the negative example sampling problem for predicting protein-protein interactions. <i>Bioinformatics</i> , 2011 , 27, 3024-8	7.2	47
102	Protein expression regulation under oxidative stress. <i>Molecular and Cellular Proteomics</i> , 2011 , 10, M11	1. 9 @92	1733
101	Two-tiered approach identifies a network of cancer and liver disease-related genes regulated by miR-122. <i>Journal of Biological Chemistry</i> , 2011 , 286, 18066-78	5.4	44
100	Prioritizing candidate disease genes by network-based boosting of genome-wide association data. <i>Genome Research</i> , 2011 , 21, 1109-21	9.7	503
99	Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. <i>Nature Biotechnology</i> , 2010 , 28, 149-56	44.5	276
98	Predicting genetic modifier loci using functional gene networks. <i>Genome Research</i> , 2010 , 20, 1143-53	9.7	63
97	Systematic discovery of nonobvious human disease models through orthologous phenotypes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 6544-9	11.5	221
96	Characterising and predicting haploinsufficiency in the human genome. <i>PLoS Genetics</i> , 2010 , 6, e10011	5 4 6	460
95	Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. <i>MBio</i> , 2010 , 1,	7.8	93
94	Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. <i>Molecular Cell</i> , 2010 , 39, 196-208	17.6	139
93	Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. <i>Molecular Systems Biology</i> , 2010 , 6, 400	12.2	425
92	It T the machine that matters: Predicting gene function and phenotype from protein networks. <i>Journal of Proteomics</i> , 2010 , 73, 2277-89	3.9	101
91	Protein abundances are more conserved than mRNA abundances across diverse taxa. <i>Proteomics</i> , 2010 , 10, 4209-12	4.8	100
90	Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 ,	11.5	262

(2008-2009)

89	Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0. <i>Journal of Cell Biology</i> , 2009 , 186, 849-62	7.3	85
88	The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. <i>Nature Cell Biology</i> , 2009 , 11, 1225-32	23.4	167
87	Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. <i>Journal of Proteome Research</i> , 2009 , 8, 6-19	5.6	25
86	A synthetic genetic edge detection program. <i>Cell</i> , 2009 , 137, 1272-81	56.2	372
85	Disorder, promiscuity, and toxic partnerships. <i>Cell</i> , 2009 , 138, 16-8	56.2	23
84	Integrating shotgun proteomics and mRNA expression data to improve protein identification. <i>Bioinformatics</i> , 2009 , 25, 1397-403	7.2	52
83	Global signatures of protein and mRNA expression levels. <i>Molecular BioSystems</i> , 2009 , 5, 1512-26		614
82	Mining gene functional networks to improve mass-spectrometry-based protein identification. <i>Bioinformatics</i> , 2009 , 25, 2955-61	7.2	31
81	Rational extension of the ribosome biogenesis pathway using network-guided genetics. <i>PLoS Biology</i> , 2009 , 7, e1000213	9.7	130
80	Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays. <i>PLoS ONE</i> , 2009 , 4, e7088	3.7	22
79	Effects of functional bias on supervised learning of a gene network model. <i>Methods in Molecular Biology</i> , 2009 , 541, 463-75	1.4	7
78	A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. <i>Nature Genetics</i> , 2008 , 40, 181-8	36.3	248
77	The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results. <i>BMC Bioinformatics</i> , 2008 , 9, 529	3.6	131
76	Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation. <i>BMC Genomics</i> , 2008 , 9, 609	4.5	16
75	The proteomic response of Mycobacterium smegmatis to anti-tuberculosis drugs suggests targeted pathways. <i>Journal of Proteome Research</i> , 2008 , 7, 855-65	5.6	31
74	Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. <i>Genome Biology</i> , 2008 , 9 Suppl 1, S5	18.3	60
73	A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. <i>Genome Biology</i> , 2008 , 9 Suppl 1, S2	18.3	194
72	Integrating functional genomics data. <i>Methods in Molecular Biology</i> , 2008 , 453, 267-78	1.4	8

71	Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. <i>Molecular and Cellular Biology</i> , 2008 , 28, 3151-61	4.8	79
70	Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. <i>PLoS Genetics</i> , 2008 , 4, e1000120	6	50
69	Age-dependent evolution of the yeast protein interaction network suggests a limited role of gene duplication and divergence. <i>PLoS Computational Biology</i> , 2008 , 4, e1000232	5	61
68	Group II intron protein localization and insertion sites are affected by polyphosphate. <i>PLoS Biology</i> , 2008 , 6, e150	9.7	21
67	A map of human protein interactions derived from co-expression of human mRNAs and their orthologs. <i>Molecular Systems Biology</i> , 2008 , 4, 180	12.2	68
66	Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. <i>Nature Protocols</i> , 2008 , 3, 1444-51	18.8	44
65	An improved, bias-reduced probabilistic functional gene network of baker yeast, Saccharomyces cerevisiae. <i>PLoS ONE</i> , 2007 , 2, e988	3.7	152
64	Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome. <i>Metabolic Engineering</i> , 2007 , 9, 8-20	9.7	16
63	How do shotgun proteomics algorithms identify proteins?. <i>Nature Biotechnology</i> , 2007 , 25, 755-7	44.5	68
62	Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. <i>Nature Biotechnology</i> , 2007 , 25, 117-24	44.5	921
61	24 Bioinformatic Prediction of Yeast Gene Function. <i>Methods in Microbiology</i> , 2007 , 597-628	2.8	3
60	Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. <i>Genome Biology</i> , 2007 , 8, R258	18.3	71
59	Systems Biology Analysis of Human Primary T Cells Identifies SAP145 as Rate Limiting for the G1-ß Phase Transition <i>Blood</i> , 2007 , 110, 3350-3350	2.2	
58	Reducing MCM Loading Causes Chromosomal Aneuploidy <i>Blood</i> , 2007 , 110, 3349-3349	2.2	
57	A fast coarse filtering method for peptide identification by mass spectrometry. <i>Bioinformatics</i> , 2006 , 22, 1524-31	7.2	29
56	How complete are current yeast and human protein-interaction networks?. <i>Genome Biology</i> , 2006 , 7, 120	18.3	302
55	Systematic profiling of cellular phenotypes with spotted cell microarrays reveals mating-pheromone response genes. <i>Genome Biology</i> , 2006 , 7, R6	18.3	35
54	Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. <i>Analytical Chemistry</i> , 2006 , 78, 6140-52	7.8	173

(2003-2006)

53	Systematic profiling of cellular phenotypes and gene function using spotted cellular microarrays. <i>FASEB Journal</i> , 2006 , 20, LB61	0.9	
52	Systematic profiling of cellular phenotypes with spotted cell microarrays reveals new mating pheromone response genes. <i>FASEB Journal</i> , 2006 , 20, A928	0.9	1
51	Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. <i>Genome Biology</i> , 2005 , 6, R40	18.3	167
50	Synthetic biology: engineering Escherichia coli to see light. <i>Nature</i> , 2005 , 438, 441-2	50.4	467
49	Comparative experiments on learning information extractors for proteins and their interactions. <i>Artificial Intelligence in Medicine</i> , 2005 , 33, 139-55	7.4	203
48	Mass spectrometry of the M. smegmatis proteome: protein expression levels correlate with function, operons, and codon bias. <i>Genome Research</i> , 2005 , 15, 1118-26	9.7	61
47	Protein function prediction using the Protein Link EXplorer (PLEX). <i>Bioinformatics</i> , 2005 , 21, 2558-9	7.2	41
46	Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. <i>Genome Research</i> , 2004 , 14, 2221-34	9.7	246
45	A probabilistic view of gene function. <i>Nature Genetics</i> , 2004 , 36, 559-64	36.3	99
44	The need for a public proteomics repository. <i>Nature Biotechnology</i> , 2004 , 22, 471-2	44.5	139
44	The need for a public proteomics repository. <i>Nature Biotechnology</i> , 2004 , 22, 471-2 Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. <i>Trends in Biotechnology</i> , 2004 , 22, 62-63	44·5 15.1	139
	Response to McDermott and Samudrala: Enhanced functional information from predicted protein	15.1	
43	Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. <i>Trends in Biotechnology</i> , 2004 , 22, 62-63	15.1	3
43	Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. <i>Trends in Biotechnology</i> , 2004 , 22, 62-63 Protein interaction networks from yeast to human. <i>Current Opinion in Structural Biology</i> , 2004 , 14, 292-5	15.1 98.1	3 278
43 42 41	Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. <i>Trends in Biotechnology</i> , 2004 , 22, 62-63 Protein interaction networks from yeast to human. <i>Current Opinion in Structural Biology</i> , 2004 , 14, 292-64 A probabilistic functional network of yeast genes. <i>Science</i> , 2004 , 306, 1555-8 Development through the eyes of functional genomics. <i>Current Opinion in Genetics and</i>	15.1 98.1 33·3	3 278 563
43 42 41 40	Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. <i>Trends in Biotechnology</i> , 2004 , 22, 62-63 Protein interaction networks from yeast to human. <i>Current Opinion in Structural Biology</i> , 2004 , 14, 292-4 A probabilistic functional network of yeast genes. <i>Science</i> , 2004 , 306, 1555-8 Development through the eyes of functional genomics. <i>Current Opinion in Genetics and Development</i> , 2004 , 14, 336-42 LGL: creating a map of protein function with an algorithm for visualizing very large biological	15.1 98.1 33.3	327856312
43 42 41 40 39	Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. <i>Trends in Biotechnology</i> , 2004 , 22, 62-63 Protein interaction networks from yeast to human. <i>Current Opinion in Structural Biology</i> , 2004 , 14, 292-4 A probabilistic functional network of yeast genes. <i>Science</i> , 2004 , 306, 1555-8 Development through the eyes of functional genomics. <i>Current Opinion in Genetics and Development</i> , 2004 , 14, 336-42 LGL: creating a map of protein function with an algorithm for visualizing very large biological networks. <i>Journal of Molecular Biology</i> , 2004 , 340, 179-90 Practical computational approaches to inferring protein function. <i>Drug Discovery Today Biosilico</i> ,	15.1 98.1 33.3	327856312

35	Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. <i>Nature Biotechnology</i> , 2003 , 21, 1055-62	44.5	184
34	Exploiting the co-evolution of interacting proteins to discover interaction specificity. <i>Journal of Molecular Biology</i> , 2003 , 327, 273-84	6.5	168
33	Diametrical clustering for identifying anti-correlated gene clusters. <i>Bioinformatics</i> , 2003 , 19, 1612-9	7.2	66
32	Predicting functional linkages from gene fusions with confidence. <i>Applied Bioinformatics</i> , 2002 , 1, 93-10	00	41
31	Exploiting big biology: integrating large-scale biological data for function inference. <i>Briefings in Bioinformatics</i> , 2001 , 2, 363-74	13.4	27
30	Measuring the dynamics of the proteome. <i>Genome Research</i> , 2001 , 11, 191-3	9.7	8
29	Protein function in the post-genomic era. <i>Nature</i> , 2000 , 405, 823-6	50.4	590
28	Computational genetics: finding protein function by nonhomology methods. <i>Current Opinion in Structural Biology</i> , 2000 , 10, 359-65	8.1	113
27	Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. <i>Journal of Bacteriology</i> , 2000 , 182, 1272-9	3.5	58
26	A combined algorithm for genome-wide prediction of protein function. <i>Nature</i> , 1999 , 402, 83-6	50.4	773
25	A fast algorithm for genome-wide analysis of proteins with repeated sequences. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 35, 440-446	4.2	59
24	A census of protein repeats. <i>Journal of Molecular Biology</i> , 1999 , 293, 151-60	6.5	313
23	Structural analysis shows five glycohydrolase families diverged from a common ancestor. <i>The Journal of Experimental Zoology</i> , 1998 , 282, 127-132		18
22	Structural analysis shows five glycohydrolase families diverged from a common ancestor 1998 , 282, 127	7	1
21	Kinetic analysis of barley chitinase. Archives of Biochemistry and Biophysics, 1997, 344, 335-42	4.1	66
20	Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. <i>Nature Structural Biology</i> , 1996 , 3, 133-40		129
19	X-ray structure of an anti-fungal chitosanase from streptomyces N174. <i>Nature Structural Biology</i> , 1996 , 3, 155-62		111
18	The structure of chitinases and prospects for structure-based drug design. <i>Canadian Journal of Botany</i> , 1995 , 73, 1142-1146		7

LIST OF PUBLICATIONS

17	Crystallization of a chitosanase from Streptomyces N174. Journal of Molecular Biology, 1993 , 232, 995-6 6.5	14
16	Mapping Functional Protein Neighborhoods in the Mouse Brain	1
15	A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating	2
14	A pan-plant protein complex map reveals deep conservation and novel assemblies	1
13	High-content protein localization screening in vivo reveals novel regulators of multiciliated cell development and function	3
12	Systematic humanization of the yeast cytoskeleton discerns functionally replaceable from divergent human genes	1
11	Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveals coordinate control of lipid metabolism	1
10	Simplified geometric representations of protein structures identify complementary interaction interfaces	2
9	Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins	2
8	hu.MAP 2.0: Integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies	1
7	A phase separated organelle at the root of motile ciliopathy	2
6	From Space to Sequence and Back Again: Iterative DNA Proximity Ligation and its Applications to DNA-Based Imaging	2
5	Systematic discovery of endogenous human ribonucleoprotein complexes	2
4	Humanization of yeast genes with multiple human orthologs reveals principles of functional divergence between paralogs	4
3	A synthesis of over 9,000 mass spectrometry experiments reveals the core set of human protein complexes	2
2	Cell adhesions link subcellular actomyosin dynamics to tissue scale force production during vertebrate convergent extension	1
1	Improving integrative 3D modeling into low- to medium- resolution EM structures with evolutionary couplings	1