Jadwiga Å**ä**wka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/182462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resistance gene enrichment sequencing (<scp>R</scp> en <scp>S</scp> eq) enables reannotation of the <scp>NB</scp> â€ <scp>LRR</scp> gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant Journal, 2013, 76, 530-544.	5.7	367
2	<i>Rpi-vnt1.1</i> , a <i>Tm-2²</i> Homolog from <i>Solanum venturii</i> , Confers Resistance to Potato Late Blight. Molecular Plant-Microbe Interactions, 2009, 22, 589-600.	2.6	194
3	The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of †̃Katahdin'-derived potato cultivars. Breeding Science, 2016, 66, 328-331.	1.9	149
4	The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theoretical and Applied Genetics, 2006, 113, 685-695.	3.6	95
5	Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. European Journal of Plant Pathology, 2016, 145, 871-884.	1.7	59
6	A resistance gene against potato late blight originating from SolanumÂ×Âmichoacanum maps to potato chromosome VII. Theoretical and Applied Genetics, 2012, 124, 397-406.	3.6	46
7	Late blight resistance gene from Solanum ruiz-ceballosii is located on potato chromosome X and linked to violet flower colour. BMC Genetics, 2012, 13, 11.	2.7	44
8	Characterization of Dickeya and Pectobacterium strains obtained from diseased potato plants in different climatic conditions of Norway and Poland. European Journal of Plant Pathology, 2017, 148, 839-851.	1.7	42
9	Diversity of <i><scp>P</scp>hytophthora infestans</i> from <scp>P</scp> oland. Plant Pathology, 2014, 63, 203-211.	2.4	38
10	Tagging QTLs for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum tuberosum) background. Theoretical and Applied Genetics, 2007, 115, 101-112.	3.6	32
11	Tagging quantitative trait loci for dormancy, tuber shape, regularity of tuber shape, eye depth and flesh colour in diploid potato originated from six <i>Solanum</i> species. Plant Breeding, 2008, 127, 49-55.	1.9	32
12	Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by DArT and cytoplasmic DNA markers. Plant Cell Reports, 2016, 35, 1345-1358.	5.6	29
13	A locus conferring effective late blight resistance in potato cultivar Sárpo Mira maps to chromosome XI. Theoretical and Applied Genetics, 2014, 127, 647-657.	3.6	28
14	Novel candidate genes AuxRP and Hsp90 influence the chip color of potato tubers. Molecular Breeding, 2015, 35, 224.	2.1	28
15	Late blightÂresistance genes in potato breeding. Planta, 2022, 255, 127.	3.2	28
16	Development of somatic hybrids SolanumÂ×Âmichoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S.Â×Âmichoacanum plants as potential sources of late blight resistance for potato breeding. Plant Cell Reports, 2013, 32, 1231-1241.	5.6	27
17	Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato. Theoretical and Applied Genetics, 2016, 129, 131-140.	3.6	26
18	Marker-assisted selection of diploid and tetraploid potatoes carryingRpi-phu1, a major gene for resistance toPhytophthora infestans. Journal of Applied Genetics, 2010, 51, 133-140.	1.9	25

Jadwiga Åšliwka

#	Article	IF	CITATIONS
19	Expression of the Potato Late Blight Resistance Gene <i>Rpi-phu1</i> and <i>Phytophthora infestans</i> Effectors in the Compatible and Incompatible Interactions in Potato. Phytopathology, 2017, 107, 740-748.	2.2	25
20	Identification and pathogenicity of Fusarium spp. associated with tuber dry rot and wilt of potato in Algeria. European Journal of Plant Pathology, 2021, 159, 495-509.	1.7	25
21	Mating Type, Virulence, Aggressiveness and Metalaxyl Resistance of Isolates of Phytophthora Infestans in Poland. Potato Research, 2007, 49, 155-166.	2.7	24
22	Hypersensitive response to Potato virus Y in potato cultivar Sárpo Mira is conferred by the Ny-Smira gene located on the long arm of chromosome IX. Molecular Breeding, 2014, 34, 471-480.	2.1	24
23	QTL for tuber morphology traits in diploid potato. Journal of Applied Genetics, 2018, 59, 123-132.	1.9	24
24	R2-like Gene Contributes to Resistance to Phytophthora infestans in Polish Potato Cultivar Bzura. American Journal of Potato Research, 2015, 92, 350-358.	0.9	23
25	Recognition of <i>Phytophthora infestans</i> Avr4 by potato R4 is triggered by Câ€ŧerminal domains comprising W motifs. Molecular Plant Pathology, 2009, 10, 611-620.	4.2	22
26	Potato cultivation system affects population structure of Phytophthora infestans. Fungal Ecology, 2016, 20, 132-143.	1.6	22
27	Novel gene Sen2 conferring broad-spectrum resistance to Synchytrium endobioticum mapped to potato chromosome XI. Theoretical and Applied Genetics, 2018, 131, 2321-2331.	3.6	22
28	Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. Journal of Plant Physiology, 2013, 170, 1541-1548.	3.5	20
29	Influence of genetic background and plant age on expression of the potato late blight resistance gene <i>Rpiâ€phu1</i> during incompatible interactions with <i>Phytophthora infestans</i> . Plant Pathology, 2013, 62, 1072-1080.	2.4	20
30	Marker-assisted pyramiding of potato late blight resistance genes Rpi-rzc1 and Rpi-phu1 on di- and tetraploid levels. Molecular Breeding, 2020, 40, 1.	2.1	18
31	Fine mapping of the Rpi-rzc1 gene conferring broad-spectrum resistance to potato late blight. European Journal of Plant Pathology, 2015, 143, 193-198.	1.7	14
32	Quantitative trait loci for tuber blackspot bruise and enzymatic discoloration susceptibility in diploid potato. Molecular Genetics and Genomics, 2018, 293, 331-342.	2.1	12
33	Population Structure of Phytophthora infestans from a Single Location in Poland Over a Long Period of Time in Context of Weather Conditions. Microbial Ecology, 2021, 81, 746-757.	2.8	10
34	Diversity of <i>Avrâ€vnt1</i> and <i>AvrSmira1</i> effector genes in Polish and Norwegian populations of <i>Phytophthora infestans</i> . Plant Pathology, 2018, 67, 1792-1802.	2.4	9
35	QTLs for potato tuber resistance to <i>Dickeya solani</i> are located on chromosomes II and IV. Plant Pathology, 2021, 70, 1745-1756.	2.4	9
36	EvaluationÂof PCR markers for Phytophthora infestans mating type determination. European Journal of Plant Pathology, 2018, 152, 33-44.	1.7	8

Jadwiga Åšliwka

#	Article	IF	CITATIONS
37	Quantitative trait loci analysis of potato tuber greening. Molecular Biology Reports, 2020, 47, 1713-1722.	2.3	8
38	Laboratory Assessment of Potato Resistance to Phytophthora Infestans. Plant Breeding and Seed Science, 2017, 76, 17-23.	0.1	8
39	BC1 and F1 Progeny from Solanum × michoacanum (+) S. tuberosum Somatic Hybrids, Autofused 4× S. michoacanum and Cultivated Potato. American Journal of Potato Research, 2017, 94, 323-333.	0.9	7
40	Phytophthora Infestans: Isolation of Pure Cultures, Storage and Inoculum Preparation. Plant Breeding and Seed Science, 2017, 76, 9-15.	0.1	7
41	Quantitative trait loci for starch-corrected chip color after harvest, cold storage and after reconditioning mapped in diploid potato. Molecular Genetics and Genomics, 2020, 295, 209-219.	2.1	6
42	Cytoplasmic diversity of potato relatives preserved at Plant Breeding and Acclimatization Institute in Poland. Molecular Biology Reports, 2020, 47, 3929-3935.	2.3	6
43	Analysis of Cytosine Methylation in Genomic DNA of Solanum × michoacanum (+) S. tuberosum Somatic Hybrids. Agronomy, 2021, 11, 845.	3.0	6
44	Resistance to Phytophthora Infestans in Three Solanum Nigrum F3 Families. Plant Breeding and Seed Science, 2014, 66, 63-73.	0.1	4
45	eQTL mapping of the 12S globulin cruciferin gene PGCRURSE5 as a novel candidate associated with starch content in potato tubers. Scientific Reports, 2020, 10, 17168.	3.3	4
46	Genetic factors encoding resistance to late blight caused by Phytophthora infestans (Mont.) de Bary on the potato genetic map. Cellular and Molecular Biology Letters, 2004, 9, 855-67.	7.0	4
47	The influence of long-term storage in liquid nitrogen on survival and pathogenicity of Phytophthora Infestans isolates. Journal of Plant Protection Research, 2012, 52, 479-485.	1.0	3
48	Quantitative trait loci affecting intensity of violet flower colour in potato. Euphytica, 2017, 213, 1.	1.2	2
49	Quantitative Trait Loci for Resistance to Potato Dry Rot Caused by Fusarium sambucinum. Agronomy, 2022, 12, 203.	3.0	1
50	Tuber Flesh Colour, Enzymatic Discolouration, Dormancy and Late Blight Resistance of 29 Tuber-Bearing Accessions of Solanum spp Potato Research, 2023, 66, 1-21.	2.7	1