Jau-Nian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824307/publications.pdf

Version: 2024-02-01

		147566	182168
59	4,296 citations	31	51
papers	citations	h-index	g-index
62	63	62	C1 47
63	63	63	6147
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A High-Content Screen Identifies Drugs That Restrict Tumor Cell Extravasation across the Endothelial Barrier. Cancer Research, 2021, 81, 619-633.	0.4	8
2	Glutamate 73 Promotes Anti-arrhythmic Effects of Voltage-Dependent Anion Channel Through Regulation of Mitochondrial Ca2+ Uptake. Frontiers in Physiology, 2021, 12, 724828.	1.3	4
3	Mitochondrial Calcium Uniporter Deficiency in Zebrafish Causes Cardiomyopathy With Arrhythmia. Frontiers in Physiology, 2020, 11, 617492.	1.3	14
4	A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Reports, 2018, 22, 1211-1224.	2.9	13
5	Catalytic Enantioselective Synthesis of Guvacine Derivatives through [4 + 2] Annulations of Imines with α-Methylallenoates. Organic Letters, 2018, 20, 6089-6093.	2.4	28
6	Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight, 2018, 3, .	2.3	36
7	Abstract 17251: Visualization of Neural Crest Cell Migration to the Dorsal Surface of Developing Zebrafish Myocardium. Circulation, 2018, 138, .	1.6	1
8	Tbx20 drives cardiac progenitor formation and cardiomyocyte proliferation in zebrafish. Developmental Biology, 2017, 421, 139-148.	0.9	52
9	The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. ELife, 2017, 6, .	2.8	33
10	Transcriptional Regulation of Heart Development in Zebrafish. Journal of Cardiovascular Development and Disease, 2016, 3, 14.	0.8	25
11	The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish. Journal of Biological Chemistry, 2016, 291, 26636-26646.	1.6	24
12	Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart. Developmental Biology, 2015, 404, 103-112.	0.9	68
13	RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. Journal of Clinical Investigation, 2015, 126, 195-206.	3.9	114
14	Mitochondrial Ca2+ uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. ELife, 2015, 4, .	2.8	67
15	Abstract 15: Global RNA Splicing Regulation in Cardiac Maturation. Circulation Research, 2015, 117, .	2.0	0
16	High Resolution Structure and Double Electron-Electron Resonance of the Zebrafish Voltage-dependent Anion Channel 2 Reveal an Oligomeric Population. Journal of Biological Chemistry, 2014, 289, 12566-12577.	1.6	116
17	Regulation of Sufu activity by p66 \hat{l}^2 and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes and Development, 2014, 28, 2547-2563.	2.7	42
18	NADPH Oxidase 4 Induces Cardiac Arrhythmic Phenotype in Zebrafish. Journal of Biological Chemistry, 2014, 289, 23200-23208.	1.6	23

#	Article	IF	Citations
19	Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1624-H1638.	1.5	31
20	A dual role for Nucleolin identified by systems analysis of cardiac chromatin remodelers. FASEB Journal, 2013, 27, 1213.1.	0.2	0
21	Abstract 235: Global RNA Splicing and Regulation in Cardiac Maturation and Diseases. Circulation Research, 2013, 113, .	2.0	0
22	Scl Represses Cardiomyogenesis in Prospective Hemogenic Endothelium and Endocardium. Cell, 2012, 150, 590-605.	13.5	142
23	Regulation of Voltage-Dependent Anion Channel 2 at Glutamate 73 is Critical for its Role in Cardiac Calcium Handling. Biophysical Journal, 2012, 102, 312a.	0.2	1
24	Sodium pump activity in the yolk syncytial layer regulates zebrafish heart tube morphogenesis. Developmental Biology, 2012, 362, 263-270.	0.9	13
25	NADPH oxidase 4 induces cardiac arrhythmia in zebrafish through ROS. FASEB Journal, 2012, 26, 692.8.	0.2	0
26	In vivo screening of chromatin remodelers in zebrafish reveals proteins governing cardiac growth. FASEB Journal, 2012, 26, 1134.15.	0.2	0
27	The PAF1 complex differentially regulates cardiomyocyte specification. Developmental Biology, 2011, 353, 19-28.	0.9	41
28	Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development (Cambridge), 2011, 138, 1173-1181.	1.2	59
29	Mutation in utp15 Disrupts Vascular Patterning in a p53-Dependent Manner in Zebrafish Embryos. PLoS ONE, 2011, 6, e25013.	1.1	8
30	Evolving Cardiac Conduction Phenotypes in Developing Zebrafish Larvae: Implications to Drug Sensitivity. Zebrafish, 2010, 7, 325-331.	0.5	24
31	The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish. Developmental Biology, 2010, 341, 167-175.	0.9	49
32	Regulation of Vertebrate Left-Right Axis Development by Calcium. , 2010, , 1885-1890.		0
33	The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature, 2009, 457, 205-209.	13.7	110
34	Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature, 2009, 459, 98-102.	13.7	140
35	Calcium signaling: A common thread in vertebrate left–right axis development. Developmental Dynamics, 2008, 237, 3491-3496.	0.8	15
36	Zebrafish as a model for cardiovascular development and disease. Drug Discovery Today: Disease Models, 2008, 5, 135-140.	1.2	35

#	Article	IF	Citations
37	Conformational changes of a Ca ²⁺ -binding domain of the Na ⁺ /Ca ²⁺ exchanger monitored by FRET in transgenic zebrafish heart. American Journal of Physiology - Cell Physiology, 2008, 295, C388-C393.	2.1	24
38	A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes and Development, 2007, 21, 784-796.	2.7	125
39	Na,K-ATPase α2 and Ncx4a regulate zebrafish left-right patterning. Development (Cambridge), 2007, 134, 1921-1930.	1.2	47
40	Involvement of zebrafish Na+,K+ ATPase in myocardial cell junction maintenance. Journal of Cell Biology, 2007, 176, 223-230.	2.3	28
41	A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13990-13995.	3.3	107
42	FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Developmental Biology, 2007, 304, 735-744.	0.9	203
43	A Novel Mitochondrial Matrix Serine/Threonine Protein Phosphatase Is Essential to Cardiomyocyte Survival and Cardiac Function by Regulating Mitochondrial Permeability Transition. Journal of Cardiac Failure, 2006, 12, S42.	0.7	0
44	santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development (Cambridge), 2006, 133, 3139-3146.	1.2	128
45	NXT2 is required for embryonic heart development in zebrafish. BMC Developmental Biology, 2005, 5, 7.	2.1	35
46	Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development (Cambridge), 2005, 132, 5199-5209.	1.2	742
47	Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17699-17704.	3.3	92
48	Cardiogenesis and the Regulation of Cardiac-Specific Gene Expression. Heart Failure Clinics, 2005, 1, 157-170.	1.0	4
49	Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development (Cambridge), 2005, 132, 4193-4204.	1.2	303
50	heart of glass Regulates the Concentric Growth of the Heart in Zebrafish. Current Biology, 2003, 13, 2138-2147.	1.8	224
51	Rapid Analysis of Angiogenesis Drugs in a Live Fluorescent Zebrafish Assay. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 911-912.	1.1	189
52	Na,K-ATPase is essential for embryonic heart development in the zebrafish. Development (Cambridge), 2003, 130, 6165-6173.	1.2	99
53	Patterning of angiogenesis in the zebrafish embryo. Development (Cambridge), 2002, 129, 973-982.	1.2	270
54	Morphogenesis of Prechordal Plate and Notochord Requires Intact Eph/Ephrin B Signaling. Developmental Biology, 2001, 234, 470-482.	0.9	70

Jau-Nian Chen

#	Article	IF	CITATIONS
55	Genetic Steps to Organ Laterality in Zebrafish. Comparative and Functional Genomics, 2001, 2, 60-68.	2.0	35
56	Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Current Biology, 2001, 11, 1481-1491.	1.8	139
57	Differential rescue of visceral and cardiac defects inDrosophilaby vertebratetinman-related genes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9366-9371.	3.3	49
58	Genetic dissection of heart development. , 1998, , 7-17.		0
59	Bone morphogenetic protein-4 expression characterizes inductive boundaries in organs of developing zebrafish. Development Genes and Evolution, 1997, 207, 107-114.	0.4	47