List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of endurance training and PGC-1α overexpression on calculated lactate production volume during exercise based on blood lactate concentration. Scientific Reports, 2022, 12, 1635.	1.6	4
2	FOXO1 cooperates with C/EBPÎ' and ATF4 to regulate skeletal muscle atrophy transcriptional program during fasting. FASEB Journal, 2022, 36, e22152.	0.2	22
3	The Steroidal Alkaloid Tomatidine and Tomatidine-Rich Tomato Leaf Extract Suppress the Human Gastric Cancer-Derived 85As2 Cells In Vitro and In Vivo via Modulation of Interferon-Stimulated Genes. Nutrients, 2022, 14, 1023.	1.7	12
4	PP6 deficiency in mice with KRAS mutation and Trp53 loss promotes early death by PDAC with cachexiaâ€like features. Cancer Science, 2022, 113, 1613-1624.	1.7	3
5	Differences in phosphatidylcholine profiles and identification of characteristic phosphatidylcholine molecules in meat animal species and meat cut locations. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1205-1214.	0.6	4
6	Effects of fenofibrate and its combination with lovastatin on the expression of genes involved in skeletal muscle atrophy, including FoxO1 and its targets. Journal of Toxicological Sciences, 2021, 46, 11-24.	0.7	3
7	Citrus hassaku Extract Powder Increases Mitochondrial Content and Oxidative Muscle Fibers by Upregulation of PGC-1α in Skeletal Muscle. Nutrients, 2021, 13, 497.	1.7	6
8	Metabolomic analysis on blood of transgenic mice overexpressing PGC-1α in skeletal muscle. Bioscience, Biotechnology and Biochemistry, 2021, 85, 579-586.	0.6	6
9	Skeletal muscle-specific forkhead box protein-O1 overexpression suppresses atherosclerosis progression in apolipoprotein E-knockout mice. Biochemical and Biophysical Research Communications, 2021, 540, 61-66.	1.0	2
10	Fasting increases 18:2-containing phosphatidylcholines to complement the decrease in 22:6-containing phosphatidylcholines in mouse skeletal muscle. PLoS ONE, 2021, 16, e0255178.	1.1	4
11	The enhancement of fat oxidation during the active phase and suppression of body weight gain in glycerol-3-phosphate dehydrogenase 1 deficient mice. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2367-2373.	0.6	2
12	β-Aminoisobutyric Acid Suppresses Atherosclerosis in Apolipoprotein E-Knockout Mice. Biological and Pharmaceutical Bulletin, 2020, 43, 1016-1019.	0.6	9
13	Glycerophospholipid profile alterations are associated with murine muscleâ€wasting phenotype. Muscle and Nerve, 2020, 62, 413-418.	1.0	11
14	The presence of odd-chain fatty acids in <i>Drosophila</i> phospholipids. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2139-2148.	0.6	5
15	Regulation of Skeletal Muscle Function by Amino Acids. Nutrients, 2020, 12, 261.	1.7	116
16	FOXO1 suppresses PGCâ€1β gene expression in skeletal muscles. FEBS Open Bio, 2020, 10, 1373-1388.	1.0	6
17	Metabolomic Analysis of Skeletal Muscle in Aged Mice. Scientific Reports, 2019, 9, 10425.	1.6	76
18	Muscle-derived SDF-1α/CXCL12 modulates endothelial cell proliferation but not exercise training-induced angiogenesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R770-R779.	0.9	12

#	Article	IF	CITATIONS
19	Acute fructose intake suppresses fasting-induced hepatic gluconeogenesis through the AKT-FoxO1 pathway. Biochemistry and Biophysics Reports, 2019, 18, 100638.	0.7	7
20	Skeletal Muscle-specific PGC-1α Overexpression Suppresses Atherosclerosis in Apolipoprotein E-Knockout Mice. Scientific Reports, 2019, 9, 4077.	1.6	28
21	Green Tea Extracts Attenuate Brain Dysfunction in High-Fat-Diet-Fed SAMP8 Mice. Nutrients, 2019, 11, 821.	1.7	13
22	Distinct Roles of Zmynd17 and PGC1α in Mitochondrial Quality Control and Biogenesis in Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2019, 7, 330.	1.8	8
23	Genistein, daidzein, and resveratrols stimulate PGC-1β-mediated gene expression. Biochemistry and Biophysics Reports, 2019, 17, 51-55.	0.7	15
24	Characterization of myofiberâ€typeâ€specific molecules using mass spectrometry imaging. Rapid Communications in Mass Spectrometry, 2019, 33, 185-192.	0.7	17
25	Effects of <i>Sanyaku</i> and Its Constituent Diosgenin on the Fasted and Postprandial Hypertriacylglycerolemia in High-Fat-Diet-Fed KK- <i>A</i> ^{<i>y</i>} Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 9968-9975.	2.4	25
26	Green tea extracts ameliorate high-fat diet–induced muscle atrophy in senescence-accelerated mouse prone-8 mice. PLoS ONE, 2018, 13, e0195753.	1.1	36
27	Vitamin D Attenuates FOXO1-Target Atrophy Gene Expression in C2C12 Muscle Cells. Journal of Nutritional Science and Vitaminology, 2018, 64, 229-232.	0.2	24
28	Zmynd17 controls muscle mitochondrial quality and wholeâ€body metabolism. FASEB Journal, 2018, 32, 5012-5025.	0.2	23
29	Muscle-specific deletion of BDK amplifies loss of myofibrillar protein during protein undernutrition. Scientific Reports, 2017, 7, 39825.	1.6	20
30	Improved skeletal muscle Ca ²⁺ regulation in vivo following contractions in mice overexpressing PGC-1α. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R1017-R1028.	0.9	25
31	Effects of the dietary carbohydrate–fat ratio on plasma phosphatidylcholine profiles in human and mouse. Journal of Nutritional Biochemistry, 2017, 50, 83-94.	1.9	14
32	Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle β2-adrenergic receptor but not by AMPK. Scientific Reports, 2017, 7, 15141.	1.6	29
33	Effect of endurance training and branched-chain amino acids on the signaling for muscle protein synthesis in CKD model rats fed a low-protein diet. American Journal of Physiology - Renal Physiology, 2017, 313, F805-F814.	1.3	10
34	Glycerol-3-phosphate dehydrogenase 1 deficiency induces compensatory amino acid metabolism during fasting in mice. Metabolism: Clinical and Experimental, 2016, 65, 1646-1656.	1.5	30
35	Deletion of the transcriptional coactivator PGC11 \pm in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function. Biochemical and Biophysical Research Communications, 2016, 481, 251-258.	1.0	12
36	In Vivo Ca2+ Buffering Capacity Following Muscle Contractions In Skeletal Muscle Of Pgc-1α Overexpressing Mice. Medicine and Science in Sports and Exercise, 2016, 48, 747.	0.2	0

#	Article	IF	CITATIONS
37	Phosphorylation of 4EBP by oral leucine administration was suppressed in the skeletal muscle of PGC-1α knockout mice. Bioscience, Biotechnology and Biochemistry, 2016, 80, 288-290.	0.6	8
38	Metabolomic Analysis of the Skeletal Muscle of Mice Overexpressing PGC-1α. PLoS ONE, 2015, 10, e0129084.	1.1	65
39	Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise. Biochemical and Biophysical Research Communications, 2015, 457, 653-658.	1.0	13
40	PGC-1α-mediated changes in phospholipid profiles of exercise-trained skeletal muscle. Journal of Lipid Research, 2015, 56, 2286-2296.	2.0	47
41	Mechanisms of exercise- and training-induced fatty acid oxidation in skeletal muscle. The Journal of Physical Fitness and Sports Medicine, 2014, 3, 43-53.	0.2	5
42	The effects of PGC-1α on control of microvascular P <scp>o</scp> ₂ kinetics following onset of muscle contractions. Journal of Applied Physiology, 2014, 117, 163-170.	1.2	10
43	The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice. Biochemical and Biophysical Research Communications, 2014, 444, 525-530.	1.0	29
44	PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle. PLoS ONE, 2014, 9, e91006.	1.1	77
45	Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E213-E229.	1.8	17
46	Role of DNA Methylation in the Regulation of Lipogenic Glycerol-3-Phosphate Acyltransferase 1 Gene Expression in the Mouse Neonatal Liver. Diabetes, 2012, 61, 2442-2450.	0.3	47
47	Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein. Journal of Nutritional Biochemistry, 2012, 23, 123-132.	1.9	39
48	Skeletal Muscle-Specific Expression of PGC-1α-b, an Exercise-Responsive Isoform, Increases Exercise Capacity and Peak Oxygen Uptake. PLoS ONE, 2011, 6, e28290.	1.1	129
49	An increase in liver PPARÎ ³ 2 is an initial event to induce fatty liver in response to a diet high in butter: PPARÎ ³ 2 knockdown improves fatty liver induced by high-saturated fat. Journal of Nutritional Biochemistry, 2011, 22, 543-553.	1.9	78
50	Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β ₂ -adrenergic receptor activation. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E341-E349.	1.8	100
51	Control of microvascular P <scp>o</scp> ₂ kinetics following onset of muscle contractions: role for AMPK. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1350-R1357.	0.9	15
52	Increased Systemic Glucose Tolerance with Increased Muscle Glucose Uptake in Transgenic Mice Overexpressing RXRÎ ³ in Skeletal Muscle. PLoS ONE, 2011, 6, e20467.	1.1	10
53	Increased Expression of DNA Methyltransferase 3a in Obese Adipose Tissue: Studies With Transgenic Mice. Obesity, 2010, 18, 314-321.	1.5	83
54	The cathepsin L gene is a direct target of FOXO1 in skeletal muscle. Biochemical Journal, 2010, 427, 171-178.	1.7	55

#	Article	IF	CITATIONS
55	The Role of AMPK in Skeletal Muscle on Microvascular P02 Kinetics Following Onset of Muscle Contraction. Medicine and Science in Sports and Exercise, 2010, 42, 37.	0.2	0
56	FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle Journal of Biological Chemistry, 2009, 284, 20440.	1.6	1
57	α ₂ -AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E47-E55.	1.8	49
58	Ubiquitin Câ€terminal hydrolase‣3â€knockout mice are resistant to dietâ€induced obesity and show increased activation of AMPâ€activated protein kinase in skeletal muscle. FASEB Journal, 2009, 23, 4148-4157.	0.2	20
59	Overexpression of FOXO1 in skeletal muscle does not alter longevity in mice. Mechanisms of Ageing and Development, 2009, 130, 420-428.	2.2	20
60	Fasting-Induced Hypothermia and Reduced Energy Production in Mice Lacking Acetyl-CoA Synthetase 2. Cell Metabolism, 2009, 9, 191-202.	7.2	88
61	Foxo1 Inhibits Skeletal Muscle Hypertrophy. Medicine and Science in Sports and Exercise, 2009, 41, 33.	0.2	1
62	Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice. Journal of Hepatology, 2008, 49, 441-450.	1.8	93
63	Isoform-Specific Increases in Murine Skeletal Muscle Peroxisome Proliferator-Activated Receptor-Î ³ Coactivator-1α (PGC-1α) mRNA in Response to β2-Adrenergic Receptor Activation and Exercise. Endocrinology, 2008, 149, 4527-4533.	1.4	137
64	Regulation of SREBP1c Gene Expression in Skeletal Muscle: Role of Retinoid X Receptor/Liver X Receptor and Forkhead-O1 Transcription Factor. Endocrinology, 2008, 149, 2293-2305.	1.4	71
65	An Increase in Murine Skeletal Muscle Peroxisome Proliferator-Activated Receptor-Î ³ Coactivator-1α (PGC-1α) mRNA in Response to Exercise Is Mediated by β-Adrenergic Receptor Activation. Endocrinology, 2007, 148, 3441-3448.	1.4	165
66	FOXO1 Regulates the Expression of 4E-BP1 and Inhibits mTOR Signaling in Mammalian Skeletal Muscle. Journal of Biological Chemistry, 2007, 282, 21176-21186.	1.6	89
67	Peg1/Mestin obese adipose tissue is expressed from the paternal allele in an isoform-specific manner. FEBS Letters, 2007, 581, 91-96.	1.3	44
68	Role of Satellite Cells in FoxO1-Mediated Skeletal Muscle Growth. Medicine and Science in Sports and Exercise, 2007, 39, S223.	0.2	0
69	Overexpression of Peroxisome Proliferator-Activated Receptor Î ³ Co-Activator-1α Leads to Muscle Atrophy with Depletion of ATP. American Journal of Pathology, 2006, 169, 1129-1139.	1.9	96
70	Increased Very Low Density Lipoprotein Secretion and Gonadal Fat Mass in Mice Overexpressing Liver DGAT1. Journal of Biological Chemistry, 2005, 280, 21506-21514.	1.6	121
71	Effects of fish oil feeding and fasting on LXRα/RXRα binding to LXRE in the SREBP-1c promoter in mouse liver. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 77-86.	1.2	12
72	Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control. Journal of Biological Chemistry, 2004, 279, 41114-41123.	1.6	488

#	Article	IF	CITATIONS
73	Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene. Biochemical and Biophysical Research Communications, 2004, 325, 812-818.	1.0	12
74	Sterol-mediated regulation of hormone-sensitive lipase in 3T3-L1 adipocytes. Lipids, 2003, 38, 743-750.	0.7	2
75	Regulatory sequence elements of mouse GLUT4 gene expression in adipose tissues. Biochemical and Biophysical Research Communications, 2003, 312, 277-284.	1.0	11
76	A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Letters, 2003, 536, 232-236.	1.3	116
77	Overexpression of Peroxisome Proliferator-activated Receptor γ Coactivator-1α Down-regulates GLUT4 mRNA in Skeletal Muscles. Journal of Biological Chemistry, 2003, 278, 31385-31390.	1.6	131
78	Functional Conservation for Lipid Storage Droplet Association among Perilipin, ADRP, and TIP47 (PAT)-related Proteins in Mammals, Drosophila, and Dictyostelium. Journal of Biological Chemistry, 2002, 277, 32253-32257.	1.6	336
79	Mechanism for Peroxisome Proliferator-activated Receptor-α Activator-induced Up-regulation of UCP2 mRNA in Rodent Hepatocytes. Journal of Biological Chemistry, 2002, 277, 9562-9569.	1.6	123
80	Up-regulation of SREBP-1c and lipogenic genes in skeletal muscles after exercise training. Biochemical and Biophysical Research Communications, 2002, 296, 395-400.	1.0	85
81	Tea Catechins Prevent the Development of Atherosclerosis in Apoprotein E–Deficient Mice. Journal of Nutrition, 2001, 131, 27-32.	1.3	272
82	Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: an ex vivo study in humans. Journal of Nutritional Biochemistry, 2000, 11, 216-222.	1.9	111
83	Antiatherogenic Effects of Tea Polyphenols (Flavan-3-ols) in Humans and ApoE-Deficient Mice. , 1999, 66, 471-482.		2
84	Antiatherogenic Effects of a Novel Lipoprotein Lipase-Enhancing Agent in Cholesterol-Fed New Zealand White Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2601-2608.	1.1	40
85	Regulation of Neutral Cholesterol Esterase Activity by Cholesterol in J774 A.1 Macrophages. Annals of the New York Academy of Sciences, 1997, 811, 471-479.	1.8	2
86	Cholesterol-Mediated Changes of Neutral Cholesterol Esterase Activity in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 3033-3040.	1.1	16
87	Inhibition of cholesterylester accumulation by 17β-estradiol in macrophages through activation of neutral cholesterol esterase. Lipids and Lipid Metabolism, 1996, 1300, 210-218.	2.6	28
88	Effects of Various Natural Antioxidants on the Cu2+-Mediated Oxidative Modification of Low Density Lipoprotein Biological and Pharmaceutical Bulletin, 1995, 18, 1-4.	0.6	146
89	The Inhibitory Effects of Tea Polyphenols (Flavan-3-ol Derivatives) on Cu2+ Mediated Oxidative Modification of Low Density Lipoprotein Biological and Pharmaceutical Bulletin, 1994, 17, 1567-1572.	0.6	161
90	Studies on the Determination of α, β-Unsaturated Aldehydes and Their Toxicity. Japanese Journal of Toxicology and Environmental Health, 1992, 38, P1-P1.	0.1	0

#	Article	IF	CITATIONS
91	2-Alkenal as a Precursor of Thiobarbituric acid Reactive Substance: Oxidation of 2-Alkenal by Active Oxygen and Hydroperoxide Japanese Journal of Toxicology and Environmental Health, 1991, 37, 211-217.	0.1	0
92	High-Performance Liquid Chromatographic Determination of 2-Alkenals in Oxidized Lipid as Their 7-Amino-6-methylquinoline Derivatives Chemical and Pharmaceutical Bulletin, 1991, 39, 1253-1257.	0.6	6
93	Determination of α, β-Unsaturated Aldehydes in Oxidized Lipid by a 2, 4-Diaminotoluene (DAT) Fluorescence Method as a new Evaluation Method for Lipid Oxidation. Shokuhin Eiseigaku Zasshi Journal of the Food Hygienic Society of Japan, 1990, 31, 508-512_1.	0.1	1