Ali H Ellebedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824032/publications.pdf

Version: 2024-02-01

430874 395702 5,075 34 18 33 citations h-index g-index papers 46 46 46 9966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human Anti-neuraminidase Antibodies Reduce Airborne Transmission of Clinical Influenza Virus Isolates in the Guinea Pig Model. Journal of Virology, 2022, 96, JVI0142121.	3.4	11
2	The germinal centre B cell response to SARS-CoV-2. Nature Reviews Immunology, 2022, 22, 7-18.	22.7	150
3	Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature, 2022, 604, 141-145.	27.8	198
4	SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell, 2022, 185, 603-613.e15.	28.9	176
5	Reactogenicity of the Messenger <scp>RNA SARS</scp> â€" <scp>CoV</scp> â€2 Vaccines Associated With Immunogenicity in Patients With Autoimmune and Inflammatory Disease. Arthritis Care and Research, 2022, 74, 1953-1960.	3.4	5
6	Structure of a Vaccine-Induced, Germline-Encoded Human Antibody Defines a Neutralizing Epitope on the SARS-CoV-2 Spike N-Terminal Domain. MBio, 2022, 13, e0358021.	4.1	12
7	PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2. MSphere, 2022, 7, e0017922.	2.9	25
8	The rise and fall of bone marrow plasma cells after influenza vaccination. Immunology and Cell Biology, 2021, 99, 130-132.	2.3	0
9	Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Reports, 2021, 34, 108682.	6.4	31
10	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	30.7	838
11	SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature, 2021, 595, 421-425.	27.8	428
12	SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.	27.8	586
13	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	27.8	222
14	Assessment of serological assays for identifying high titer convalescent plasma. Transfusion, 2021, 61, 2658-2667.	1.6	7
15	SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell, 2021, 184, 3936-3948.e10.	28.9	241
16	Comprehensive Immunologic Evaluation of Bronchoalveolar Lavage Samples from Human Patients with Moderate and Severe Seasonal Influenza and Severe COVID-19. Journal of Immunology, 2021, 207, 1229-1238.	0.8	21
17	Effect of Immunosuppression on the Immunogenicity of mRNA Vaccines to SARS-CoV-2. Annals of Internal Medicine, 2021, 174, 1572-1585.	3.9	273
18	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	14.3	52

#	Article	IF	CITATIONS
19	Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus. Nature Communications, 2021, 12, 6161.	12.8	6
20	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	6.4	14
21	Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. ELife, 2021, 10, .	6.0	28
22	Reduced antibody activity against SARS-CoV-2 B.1.617.2 delta virus in serum of mRNA-vaccinated individuals receiving tumor necrosis factor-α inhibitors. Med, 2021, 2, 1327-1341.e4.	4.4	31
23	Influenza Immunization in the Context of Preexisting Immunity. Cold Spring Harbor Perspectives in Medicine, 2020, 11, a040964.	6.2	15
24	Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective. Immunity, 2020, 53, 852-863.e7.	14.3	46
25	Correctly folded - but not necessarily functional - influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine, 2020, 38, 7129-7137.	3.8	23
26	An Agonistic Anti-CD137 Antibody Disrupts Lymphoid Follicle Structure and T-Cell-Dependent Antibody Responses. Cell Reports Medicine, 2020, 1, 100035.	6.5	3
27	Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Science Advances, 2020, 6, .	10.3	204
28	Human germinal centres engage memory and naive B cells after influenza vaccination. Nature, 2020, 586, 127-132.	27.8	194
29	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	28.9	486
30	Harnessing Activin A Adjuvanticity to Promote Antibody Responses to BG505 HIV Envelope Trimers. Frontiers in Immunology, 2020, 11, 1213.	4.8	4
31	A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Journal of Immunology, 2020, 205, 915-922.	0.8	186
32	SARS-CoV-2 Viral RNA Shedding for More Than 87 Days in an Individual With an Impaired CD8+ T Cell Response. Frontiers in Immunology, 2020, 11, 618402.	4.8	14
33	Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science, 2019, 366, 499-504.	12.6	162
34	Immunizing the Immune: Can We Overcome Influenza's Most Formidable Challenge?. Vaccines, 2018, 6, 68.	4.4	22