Heng Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1823661/publications.pdf

Version: 2024-02-01

		394421	361022
57	1,316	19	35
papers	citations	h-index	g-index
58	58	58	1214
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydrate Polymers, 2022, 276, 118799.	10.2	68
2	Enhanced Dielectric Loss to Improve Microwave-Absorbing Performance of Ti3SiC2/Co2Z Ferrite Composites. Journal of Electronic Materials, 2022, 51, 847-856.	2.2	4
3	Bionic Scarfskin-Inspired Hierarchy Configuration toward Tunable Microwave-Absorbing Performance. ACS Applied Materials & Samp; Interfaces, 2022, , .	8.0	4
4	Unravelling the Electromagnetic Behavior in Ordered Double-Perovskite Sr2FeMoO6. Journal of Electronic Materials, 2022, 51, 3430-3437.	2.2	2
5	Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array. Energies, 2021, 14, 415.	3.1	10
6	Tunable electromagnetic properties in barium hexagonal ferrites with dualâ€ion substitution. Journal of Materials Science: Materials in Electronics, 2021, 32, 8275-8287.	2.2	8
7	Enhanced optical absorption of Fe-, Co- and Ni- decorated Ti3C2 MXene: A first-principles investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114565.	2.7	12
8	A mV-level real-time peak-voltage detection circuit based on differential structure. Review of Scientific Instruments, 2021, 92, 034713.	1.3	4
9	Mechanism analysis of irradiation location dependent leakage current for zinc oxide thin-film transistors. AIP Advances, 2021, 11, 075108.	1.3	O
10	An ultrathin and dual band metamaterial perfect absorber based on ZnSe for the polarization-independent in terahertz range. Results in Physics, 2021, 26, 104344.	4.1	34
11	Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration. Journal of Materials Science: Materials in Electronics, 2021, 32, 24258-24272.	2.2	14
12	A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology, 2021, 32, 105701.	2.6	20
13	Design of Microstrip Patch Antenna Array with Enhanced Gain Based on the Metamaterial. , 2021, , .		O
14	Fractal Order Dependent Frequency-Shifting of Perfect Absorber Based on Fractal Pattern Enabled Metasurface., 2021,,.		0
15	Double Meander Dipole Antenna Array with Enhanced Bandwidth and Gain. International Journal of Antennas and Propagation, 2021, 2021, 1-8.	1.2	6
16	Security Measurement in Industrial IoT with Cloud Computing Perspective: Taxonomy, Issues, and Future Directions. Scientific Programming, 2020, 2020, 1-31.	0.7	2
17	Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites. Journal of the American Ceramic Society, 2020, 103, 6869-6880.	3.8	37
18	The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators. Electronics (Switzerland), 2020, 9, 825.	3.1	25

#	Article	IF	CITATIONS
19	Highâ€temperature electromagnetic wave absorption properties of C _f /SiCNFs/Si ₃ N ₄ composites. Journal of the American Ceramic Society, 2020, 103, 6822-6832.	3.8	66
20	Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. Journal of Central South University, 2020, 27, 1235-1246.	3.0	18
21	A sensitivity-enhanced capacitance readout circuit with symmetric cross-coupling structure. Review of Scientific Instruments, 2020, 91, 035001.	1.3	1
22	Design of a Broadband Coplanar Waveguide-Fed Antenna Incorporating Organic Solar Cells with 100% Insolation for Ku Band Satellite Communication. Materials, 2020, 13, 142.	2.9	7
23	Novel Metamaterials-Based Hypersensitized Liquid Sensor Integrating Omega-Shaped Resonator with Microstrip Transmission Line. Sensors, 2020, 20, 943.	3.8	48
24	Bandwidth Improvement in Bow-Tie Microstrip Antennas: The Effect of Substrate Type and Design Dimensions. Applied Sciences (Switzerland), 2020, 10, 504.	2.5	19
25	High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material. Journal of the European Ceramic Society, 2020, 40, 2013-2019.	5.7	33
26	CO.3NO.7Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti3SiC2. Materials, 2020, 13, 1428.	2.9	1
27	An AMOLED Pixel Circuit Based on LTPS Thin-film Transistors with Mono-Type Scanning Driving. Electronics (Switzerland), 2020, 9, 574.	3.1	4
28	Electromagnetic simulations of polarization-insensitive and wide-angle multiband metamaterial absorber by incorporating double asterisk resonator. Bulletin of Materials Science, 2020, 43, 1.	1.7	16
29	A Low-Profile Antenna Based on Single-Layer Metasurface for Ku-Band Applications. International Journal of Antennas and Propagation, 2020, 2020, 1-8.	1.2	19
30	Corrigendum to "Security Measurement in Industrial IoT with Cloud Computing Perspective: Taxonomy, Issues, and Future Directions― Scientific Programming, 2020, 2020, 1-1.	0.7	1
31	Omnidirectional wireless power transfer system with a multidirectional receiver inside a cubic transmitter. IEICE Electronics Express, 2020, 17, 20200257-20200257.	0.8	2
32	Enhanced microwave absorbing properties of La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroics. Journal of Materials Science: Materials in Electronics, 2019, 30, 15619-15626.	2.2	5
33	Omnidirectional magnetic resonant coupling wireless power transfer system with a cubic spiral transmitter. AIP Advances, 2019, 9, .	1.3	5
34	Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring. Nanomaterials, 2019, 9, 906.	4.1	15
35	Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon, 2019, 153, 52-61.	10.3	104
36	Facile Fabrication of Extremely Small CoNi/C Core/Shell Nanoparticles for Efficient Microwave Absorber. Nano, 2019, 14, 1950090.	1.0	11

#	Article	IF	CITATIONS
37	Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	17
38	Magnetic Resonated Bilayer Square-Ring–Enabled Dual-Peak Metamaterial Absorber in P-Band. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3593-3600.	1.8	5
39	Large electromagnetic interference shielding effectiveness in Ti3(Al, Si)C2 system. Journal of Materials Science: Materials in Electronics, 2019, 30, 11011-11016.	2.2	1
40	Infrared emissivity and microwave transmission behavior of flaky aluminum functionalized pyramidal-frustum shaped periodic structure. Infrared Physics and Technology, 2019, 99, 123-128.	2.9	29
41	Mxenes Derived Laminated and Magnetic Composites with Excellent Microwave Absorbing Performance. Scientific Reports, 2019, 9, 3957.	3.3	51
42	Improved microwave absorption properties of polycarbosilane-derived SiC core-shell particles by oxidation. Journal of Alloys and Compounds, 2019, 786, 409-417.	5. 5	13
43	High Sensitive Readout Circuit for Capacitance Touch Panel With Large Size. IEEE Sensors Journal, 2019, 19, 1412-1415.	4.7	5
44	Electromagnetic matching and microwave absorption abilities of Ti3SiC2 encapsulated with Ni0.5Zn0.5Fe2O4 shell. Journal of Magnetism and Magnetic Materials, 2019, 473, 184-189.	2.3	47
45	Facile approach to fabricate BCN/Fe <i> _x </i> (B/C/N) <i> _y </i> nano-architectures with enhanced electromagnetic wave absorption. Nanotechnology, 2018, 29, 235701.	2.6	7
46	Ti ₃ C ₂ MXene: a promising microwave absorbing material. RSC Advances, 2018, 8, 2398-2403.	3.6	189
47	Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption. Journal of Applied Physics, 2018, 123, .	2.5	77
48	Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics. Journal of Materials Science, 2018, 53, 1014-1023.	3.7	17
49	Ni-modified Ti ₃ C ₂ MXene with enhanced microwave absorbing ability. Materials Chemistry Frontiers, 2018, 2, 2320-2326.	5.9	87
50	Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial. Chinese Physics B, 2018, 27, 127801.	1,4	15
51	Wide-angle microwave absorption performance of polyurethane foams combined with cross-shaped metamaterial absorber. Results in Physics, 2018, 11, 769-776.	4.1	39
52	Effect of temperature on dielectric response in X-band of silicon nitride ceramics prepared by gelcasting. AIP Advances, 2018, 8, 075127.	1.3	9
53	Investigation on microwave dielectric behavior of flaky carbonyl iron composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 15112-15118.	2.2	19

HENG LUO

#	Article	IF	CITATIONS
55	Magnetoelectric properties of lead-free (80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)-Ni0.8Zn0.2Fe2O4 particulate composites prepared by <i>in situ</i>	2.5	22
56	Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness. AlP Advances, $2016, 6, .$	1.3	20
57	Dielectric behavior of laminate-structure Cf/Si3N4 composites in X-band. Applied Physics Letters, 2014, 105, 172903.	3.3	20