Bowen Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1823577/publications.pdf

Version: 2024-02-01

147566 197535 2,793 90 31 49 h-index citations g-index papers 90 90 90 3366 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tannic Acid Induced Self-Assembly of Three-Dimensional Graphene with Good Adsorption and Antibacterial Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 1404-1413.	3.2	214
2	Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. Journal of Materials Chemistry A, 2019, 7, 1233-1243.	5.2	142
3	3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nature Communications, 2020, 11, 3462.	5.8	124
4	Extremely deep photopolymerization using upconversion particles as internal lamps. Polymer Chemistry, 2016, 7, 2457-2463.	1.9	116
5	UV-Curable Coatings from Multiarmed Cardanol-Based Acrylate Oligomers. ACS Sustainable Chemistry and Engineering, 2015, 3, 1313-1320.	3.2	114
6	Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. Journal of Hazardous Materials, 2015, 300, 615-623.	6.5	104
7	Highly efficient dandelion-like near-infrared light photoinitiator for free radical and thiol-ene photopolymerizations. Nature Communications, 2019, 10, 3560.	5.8	99
8	In situ green synthesis of Au nanoparticles onto polydopamine-functionalized graphene for catalytic reduction of nitrophenol. RSC Advances, 2014, 4, 64816-64824.	1.7	95
9	Highly stable thiol–ene systems: from their structure–property relationship to DLP 3D printing. Journal of Materials Chemistry C, 2018, 6, 11561-11568.	2.7	80
10	Synthesis of Vanillin-Based Polyimine Vitrimers with Excellent Reprocessability, Fast Chemical Degradability, and Adhesion. ACS Applied Polymer Materials, 2020, 2, 5716-5725.	2.0	72
11	Synthesis of Temperature/pH Dual-Stimuli-Response Multicompartmental Microcapsules via Pickering Emulsion for Preprogrammable Payload Release. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4821-4832.	4.0	68
12	Synthesis of inhibitor-loaded polyaniline microcapsules with dual anti-corrosion functions for protection of carbon steel. Electrochimica Acta, 2020, 364, 137299.	2.6	62
13	Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS Applied Materials & Interfaces, 2016, 8, 21028-21038.	4.0	57
14	Synthesis of New Biobased Antibacterial Methacrylates Derived from Tannic Acid and Their Application in UV-Cured Coatings. Industrial & Engineering Chemistry Research, 2014, 53, 10835-10840.	1.8	56
15	A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes. Talanta, 2014, 120, 76-83.	2.9	52
16	Cardanol-based oligomers with "hard core, flexible shell―structures: from synthesis to UV curing applications. Green Chemistry, 2015, 17, 3319-3325.	4.6	46
17	Efficient photopolymerization of thick pigmented systems using upconversion nanoparticlesâ€assisted photochemistry. Journal of Polymer Science Part A, 2018, 56, 994-1002.	2.5	46
18	Sustainable valorization of lignin with levulinic acid and its application in polyimine thermosets. Green Chemistry, 2019, 21, 4964-4970.	4.6	43

#	Article	IF	CITATIONS
19	Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency. Journal of Colloid and Interface Science, 2021, 600, 660-669.	5.0	42
20	A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Mikrochimica Acta, 2016, 183, 1543-1551.	2.5	41
21	Cleavable Unimolecular Photoinitiators Based on Oximeâ€Ester Chemistry for Twoâ€Photon Threeâ€Dimensional Printing. ChemPhotoChem, 2019, 3, 1090-1094.	1.5	40
22	Thioxanthone acetic acid ammonium salts: highly efficient photobase generators based on photodecarboxylation. RSC Advances, 2015, 5, 53342-53348.	1.7	39
23	A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Mikrochimica Acta, 2017, 184, 1739-1745.	2.5	36
24	Cross-linked micelles of graftlike block copolymer bearing biodegradable ε-caprolactone branches: a novel delivery carrier for paclitaxel. Journal of Materials Chemistry, 2012, 22, 373-380.	6.7	35
25	Antimicrobial Thiol–ene–acrylate Photosensitive Resins for <scp>DLP</scp> 3D Printing. Photochemistry and Photobiology, 2019, 95, 1219-1229.	1.3	35
26	Layer-by-layer assembled ionic-liquid functionalized graphene–polyaniline nanocomposite with enhanced electrochemical sensing properties. Journal of Materials Chemistry C, 2014, 2, 4818.	2.7	34
27	Pd(OAc) ₂ /Sî€PPh ₃ accelerated activation of gem-dichloroalkenes for the construction of 3-arylchromones. Chemical Communications, 2015, 51, 17576-17579.	2.2	34
28	Layer-by-layer self-assembled hybrid multilayer films based on poly(sodium 4-styrenesulfonate) stabilized graphene with polyaniline and their electrochemical sensing properties. RSC Advances, 2013, 3, 17866.	1.7	33
29	Deep Thiol-ene Photopolymerization Using Upconversion Nanoparticle-assisted Photochemistry. Chemistry Letters, 2016, 45, 1054-1056.	0.7	33
30	Phenacyl Phenothiazinium Salt as a New Broadâ€Wavelengthâ€Absorbing Photoinitiator for Cationic and Free Radical Polymerizations. Angewandte Chemie - International Edition, 2021, 60, 16917-16921.	7.2	33
31	Humidity sensor fabricated by inkjet-printing photosensitive conductive inks PEDOT:PVMA on a paper substrate. RSC Advances, 2016, 6, 47498-47508.	1.7	32
32	Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics. RSC Advances, 2016, 6, 83720-83729.	1.7	32
33	Photopolymerization of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 58287-58294.	4.0	32
34	Bio-based epoxy-anhydride thermosets from six-armed linoleic acid-derived epoxy resin. RSC Advances, 2016, 6, 52549-52555.	1.7	30
35	Efficient unimolecular photoinitiators for simultaneous hybrid thiol–yne–epoxy photopolymerization under visible LED light irradiation. Polymer Chemistry, 2017, 8, 1579-1588.	1.9	29
36	Near-infrared light induced cationic polymerization based on upconversion and ferrocenium photochemistry. Polymer Chemistry, 2019, 10, 5574-5577.	1.9	28

#	Article	IF	Citations
37	Three-dimensional Ag–tannic acid–graphene as an antibacterial material. New Journal of Chemistry, 2016, 40, 6332-6339.	1.4	27
38	Noncovalent functionalization of carbon nanotube using poly(vinylcarbazole)â€based compatibilizer for reinforcement and conductivity improvement in epoxy composite. Journal of Applied Polymer Science, 2017, 134, .	1.3	24
39	Conjugated Carbazoleâ€Based Schiff Bases as Photoinitiators: From Facile Synthesis to Efficient Twoâ€Photon Polymerization. Journal of Polymer Science Part A, 2018, 56, 2692-2700.	2.5	24
40	Dispersion of carbon nanotubes in water by self-assembled micelles of branched amphiphilic multifunctional copolymers with photosensitivity and electroactivity. Journal of Materials Chemistry A, 2014, 2, 14481-14492.	5.2	23
41	Synthesis of robust polyaniline microcapsules via UV-initiated emulsion polymerization for self-healing and anti-corrosion coating. Progress in Organic Coatings, 2022, 162, 106592.	1.9	23
42	Stiff Self-Healing Coating Based on UV-Curable Polyurethane with a "Hard Core, Flexible Arm― Structure. ACS Omega, 2018, 3, 11128-11135.	1.6	22
43	Oneâ€Pot Synthesis of Benzimidazo[1,2â€∢i>f]phenanthridines by Cascade Palladiumâ€Catalyzed <i>N</i> à€Arylation and Intramolecular C–H Coupling. European Journal of Organic Chemistry, 2013, 2013, 7683-7687.	1.2	21
44	Layer-by-layer inkjet printing SPS:PEDOT NP/RGO composite film for flexible humidity sensors. RSC Advances, 2016, 6, 113298-113306.	1.7	21
45	Reactive copolymer functionalized graphene sheet for enhanced mechanical and thermal properties of epoxy composites. Journal of Polymer Science Part A, 2015, 53, 2776-2785.	2.5	19
46	Chemiluminescence Induced Cationic Photopolymerization Using Sulfonium Salt. ACS Macro Letters, 2020, 9, 471-475.	2.3	18
47	Preparation of surface self-concentration and contact-killing antibacterial coating through UV curing. RSC Advances, 2015, 5, 34199-34205.	1.7	17
48	Synthesis of UV-curable polycarbonate diols (PCDL)-based polyurethane acrylate for negative photoresist. Polymer Bulletin, 2016, 73, 647-659.	1.7	17
49	Multiwalled carbon nanotubes noncovalently functionalized by electro-active amphiphilic copolymer micelles for selective dopamine detection. RSC Advances, 2015, 5, 18233-18241.	1.7	15
50	Silyl-based initiators for two-photon polymerization: from facile synthesis to quantitative structure–activity relationship analysis. Polymer Chemistry, 2017, 8, 6644-6653.	1.9	15
51	A new anthraquinone derivative as a near UV and visible light photoinitiator for free-radical, thiol–ene and cationic polymerizations. Polymer Chemistry, 2021, 12, 3299-3306.	1.9	15
52	Highly flexible, transparent cellulose composite films used in UV imprint lithography. Cellulose, 2013, 20, 907-918.	2.4	14
53	Conjugated Ketocarbazoles as Efficient Photoinitiators: From Facile Synthesis to Efficient Two-photon Polymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 257-264.	0.1	14
54	Robust Damage-Reporting Strategy Enabled by Dual-Compartment Microcapsules. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14518-14529.	4.0	14

#	Article	lF	CITATIONS
55	Carbanion as a Superbase for Catalyzing Thiol–Epoxy Photopolymerization. Polymers, 2017, 9, 400.	2.0	13
56	Fabrication of dual anti-corrosive polyaniline microcapsules <i>via</i> Pickering emulsion for active corrosion protection of steel. Soft Matter, 2022, 18, 2829-2841.	1.2	13
57	Synthesis and properties of UV-curable cardanol-based acrylate oligomers with cyclotriphosphazene core. Journal of Coatings Technology Research, 2019, 16, 179-188.	1.2	11
58	Filling Aggregation-Induced Extinction Mechanism in Near-Infrared Photopolymerization for Gradient and Highly Filled Bulk Materials. Macromolecules, 2022, 55, 2075-2084.	2.2	11
59	Novel partially bio-based fluorinated polyimides from dimer fatty diamine for UV-cured coating. Journal of Coatings Technology Research, 2017, 14, 1325-1334.	1.2	10
60	Synthesis of fluorinated polycarbonate-based polyurethane acrylate for UV-curable coatings. Journal of Coatings Technology Research, 2017, 14, 233-241.	1.2	10
61	Hollow particles templated from Pickering emulsion with high thermal stability and solvent resistance: Young investigator perspective. Journal of Colloid and Interface Science, 2019, 542, 144-150.	5.0	10
62	Chemiluminescenceâ€Induced Free Radical–Promoted Cationic Polymerization. Macromolecular Rapid Communications, 2020, 41, 2000004.	2.0	10
63	Methods to Evaluate Nearâ€Infrared Photoinitiating Systems for Photopolymerisation Reactions Assisted By Upconversion Materials. ChemPhotoChem, 2021, 5, 915-919.	1.5	10
64	Micelle-assisted synthesis of PANI nanoparticles and application as particulate emulsifier. Colloid and Polymer Science, 2014, 292, 653-660.	1.0	9
65	Synthesis of doubleâ€hydrophilic poly(methylacrylic acid)–poly(ethylene glycol)–poly(methylacrylic) Tj ETQq1	1.0.7843	14 rgBT /0
66	Preparation and characterization of carboxylterminated poly (butadiene-co-acrylonitrile) -epoxy resin prepolymers for fusion-bonded-epoxy powder coating. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 694-701.	0.4	8
67	Micelle-encapsulated multi-wall carbon nanotubes with photosensitive copolymer and its application in the detection of dopamine. Colloid and Polymer Science, 2014, 292, 153-161.	1.0	8
68	Synthesis of novel branched UV-curable methacrylate copolymer and its application in negative photoresist. Polymer Bulletin, 2015, 72, 523-533.	1.7	8
69	Efficient Benzodioxoleâ€based unimolecular photoinitiators: From synthesis to photopolymerization under <scp>UV</scp> â€A and visible <scp>LED</scp> light irradiation. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
70	Hollow Microcapsules with Controlled Mechanical Properties Templated from Pickering Emulsion Droplets. Macromolecular Chemistry and Physics, 2019, 220, 1800395.	1.1	8
71	Laser Induced Thermal Effect on the Polymerization Behavior in Upconversion Particle Assisted Nearâ€Infrared Photopolymerization. ChemPhysChem, 2022, 23, .	1.0	8
72	One-pot synthesis of branched alternating copolymers P(St-alt-MAn) via free radical polymerization in the presence of chain transfer monomer. Polymer Bulletin, 2013, 70, 1795-1803.	1.7	7

#	Article	IF	CITATIONS
73	One-pot synthesis of molecular glass photoresists based on \hat{l}^2 -cyclodextrin containing a t-butyloxy carbonyl group for i-line lithography. Polymer Bulletin, 2017, 74, 1091-1101.	1.7	7
74	Investigation of the Contact Angle and Packing Density of Silica Nanoparticles at a Pickering Emulsion Interface Fixed by UV Polymerization. Langmuir, 2022, 38, 4234-4242.	1.6	7
75	Synthesis of chemically amplified photoresist polymer containing four (Meth)acrylate monomers via RAFT polymerization and its application for KrF lithography. Journal of Polymer Research, 2016, 23, 1.	1.2	6
76	Synthesis of novel copolymer based on precipitation polymerization and its application in positive-tone photoresist. Journal of Polymer Research, 2017, 24, 1.	1.2	6
77	Novel Star Polymers as Chemically Amplified Positive-Tone Photoresists for KrF Lithography Applications. Industrial & Engineering Chemistry Research, 2018, 57, 6790-6796.	1.8	6
78	Synthesis of graphene oxide functionalized by phytic acid for anticorrosive reinforcement of waterborne epoxy coating. Journal of Applied Polymer Science, 2022, 139, 51910.	1.3	6
79	Completely green synthesis of Ag nanoparticles stabilized by soy protein isolate under UV irradiation. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 852-856.	0.4	5
80	Synthesis and properties of UV-curable hyperbranched polyurethane and its application in the negative-type photoresist. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 208-212.	0.4	5
81	Novel one-component molecular glass photoresist based on cyclotriphosphazene containing t-butyloxy carbonyl group for i-line lithography. Journal of Polymer Research, 2017, 24, 1.	1.2	5
82	A photosensitive copolymer for UV-curable electrodeposition coatings. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 1098-1102.	0.4	4
83	Design and synthesis of waterâ€soluble photosensitive αâ€cyclodextrin and its application in dispersing carbon nanotubes. Journal of Applied Polymer Science, 2013, 130, 2588-2593.	1.3	4
84	Photosensitive acrylate copolymer for electrodeposition photoresist. Polymer Science - Series A, 2013, 55, 225-232.	0.4	3
85	Photo-sensitive bio-based copolymer containing cholic acids: novel functional materials for 248nm photoresist. Journal of Polymer Research, 2018, 25, 1.	1.2	3
86	Electricâ€fieldâ€induced aggregation of polymeric micelles to construct secondary assembly films. Journal of Applied Polymer Science, 2013, 127, 2816-2822.	1.3	2
87	An Efficient Approach to Prepare Carbon Nanotube–Gold Nanoparticles Nanocomposites Based on Amphiphilic Copolymer Containing Coumarin. Chemistry Letters, 2015, 44, 1497-1499.	0.7	1
88	Preparation and Properties of Aqueous SCNTs Dispersion based on A UV-curable Polymeric Dispersant. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 485-491.	0.4	1
89	Phenacyl Phenothiazinium Salt as a New Broadâ€Wavelengthâ€Absorbing Photoinitiator for Cationic and Free Radical Polymerizations. Angewandte Chemie, 2021, 133, 17054-17058.	1.6	1
90	Synthesis of a branched photosensitive copolymer and its application for negativeâ€type photoresists. Journal of Applied Polymer Science, 2016, 133, .	1.3	0