
Sheng Bi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1823066/publications.pdf Version: 2024-02-01

SHENC RL

#	Article	IF	CITATIONS
1	Conductive Metal–Organic Frameworks for Supercapacitors. Advanced Materials, 2022, 34, e2200999.	11.1	101
2	Pore-Size-Dependent Capacitance and Charging Dynamics of Nanoporous Carbons in Aqueous Electrolytes. Journal of Physical Chemistry C, 2022, 126, 6854-6862.	1.5	17
3	MnO2/carbon nanotube free-standing electrode recycled from spent manganese-oxygen battery as high-performance supercapacitor material. Journal of Materials Science, 2022, 57, 8818-8827.	1.7	11
4	Ion Clusters and Networks in Water-in-Salt Electrolytes. Journal of the Electrochemical Society, 2021, 168, 050514.	1.3	31
5	Regulation of SEI Formation by Anion Receptors to Achieve Ultraâ€Stable Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19232-19240.	7.2	66
6	Regulation of SEI Formation by Anion Receptors to Achieve Ultraâ€Stable Lithiumâ€Metal Batteries. Angewandte Chemie, 2021, 133, 19381-19389.	1.6	13
7	Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustainable Energy and Fuels, 2020, 4, 1285-1295.	2.5	34
8	Adding salt to expand voltage window of humid ionic liquids. Nature Communications, 2020, 11, 5809.	5.8	60
9	Theory of ion aggregation and gelation in super-concentrated electrolytes. Journal of Chemical Physics, 2020, 152, 234506.	1.2	49
10	lon Structure Transition Enhances Charging Dynamics in Subnanometer Pores. ACS Nano, 2020, 14, 2395-2403.	7.3	52
11	Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19, 552-558.	13.3	405
12	Free and Bound States of Ions in Ionic Liquids, Conductivity, and Underscreening Paradox. Physical Review X, 2019, 9, .	2.8	54
13	Low-Temperature Charging Dynamics of the Ionic Liquid and Its Gating Effect on FeSe _{0.5} Te _{0.5} Superconducting Films. ACS Applied Materials & Interfaces, 2019, 11, 17979-17986.	4.0	10
14	Adding Solvent into Ionic Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance. ACS Applied Materials & Interfaces, 2019, 11, 13822-13830.	4.0	8
15	Systematic comparison of force fields for molecular dynamic simulation of Au(111)/Ionic liquid interfaces. Fluid Phase Equilibria, 2018, 463, 106-113.	1.4	23
16	Understanding Electric Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale. ACS Applied Materials & Interfaces, 2018, 10, 43211-43218.	4.0	21
17	Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nature Communications, 2018, 9, 5222.	5.8	96
18	Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices. ACS Applied Materials & Interfaces, 2017, 9, 40949-40958.	4.0	24