Catarina Raposo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1822962/publications.pdf

Version: 2024-02-01

567281 580821 32 638 15 25 citations h-index g-index papers 33 33 33 772 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Involvement of AMPK, $IK\hat{I}^2\hat{I}\pm NF\hat{I}^2B$ and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Research, 2015, 1627, 119-133.	2.2	66
2	Sildenafil (Viagra) Protective Effects on Neuroinflammation: The Role of iNOS/NO System in an Inflammatory Demyelination Model. Mediators of Inflammation, 2013, 2013, 1-11.	3.0	57
3	Sildenafil (Viagra \hat{A}^{\odot}) down regulates cytokines and prevents demyelination in a cuprizone-induced MS mouse model. Cytokine, 2012, 60, 540-551.	3.2	56
4	CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharmaceutica Sinica B, 2021, 11, 1129-1147.	12.0	47
5	Role of iNOS-NO-cGMP signaling in modulation of inflammatory and myelination processes. Brain Research Bulletin, 2014, 104, 60-73.	3.0	43
6	Acute blood–brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom. Brain Research, 2007, 1149, 18-29.	2.2	39
7	The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes and Diseases, 2021, 8, 48-60.	3.4	33
8	Effect of Phoneutria nigriventer Venom on the Expression of Junctional Protein and P-gp Efflux Pump Function in the Blood–Brain Barrier. Neurochemical Research, 2012, 37, 1967-1981.	3.3	29
9	Neuroinflammation and astrocytic reaction in the course of Phoneutria nigriventer (armed-spider) blood–brain barrier (BBB) opening. NeuroToxicology, 2009, 30, 636-646.	3.0	24
10	Phosphodiesterase-5 inhibition promotes remyelination by MCP-1/CCR-2 and MMP-9 regulation in a cuprizone-induced demyelination model. Experimental Neurology, 2016, 275, 143-153.	4.1	24
11	Effect of diethylcarbamazine on chronic hepatic inflammation induced by alcohol in C57BL/6 mice. European Journal of Pharmacology, 2012, 689, 194-203.	3.5	21
12	c-FOS and n-NOS reactive neurons in response to circulating Phoneutria nigriventer spider venom. Brain Research Bulletin, 2007, 73, 114-126.	3.0	19
13	Sildenafil (Viagra $\hat{A}^{@}$) prevents and restores LPS-induced inflammation in astrocytes. Neuroscience Letters, 2016, 630, 59-65.	2.1	19
14	Scorpion and spider venoms in cancer treatment: state of the art, challenges, and perspectives. Journal of Clinical and Translational Research, 2017, 3, 233-249.	0.3	19
15	Expression of VEGF and Flk-1 and Flt-1 Receptors during Blood-Brain Barrier (BBB) Impairment Following Phoneutria nigriventer Spider Venom Exposure. Toxins, 2013, 5, 2572-2588.	3.4	16
16	Dendritic cells treated with crude <i><scp>P</scp>lasmodium berghei</i> extracts acquire immuneâ€modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology, 2014, 143, 164-173.	4.4	14
17	Triggering of Protection Mechanism against Phoneutria nigriventer Spider Venom in the Brain. PLoS ONE, 2014, 9, e107292.	2.5	14
18	Neuropharmacological effects of Phoneutria nigriventer venom on astrocytes. Neurochemistry International, 2016, 96, 13-23.	3.8	13

#	Article	IF	CITATIONS
19	Effect of new thiazolidine derivatives LPSF/GQ-02 and LPSF/GQ-16 on atherosclerotic lesions in LDL receptor-deficient mice (LDLRâ^'/â^'). Cardiovascular Pathology, 2013, 22, 81-90.	1.6	11
20	Exacerbation of Autoimmune Neuro-Inflammation in Mice Cured from Blood-Stage Plasmodium berghei Infection. PLoS ONE, 2014, 9, e110739.	2.5	11
21	Venom of thePhoneutria nigriventerspider alters the cell cycle, viability, and migration of cancer cells. Journal of Cellular Physiology, 2019, 234, 1398-1415.	4.1	10
22	Spider venom administration impairs glioblastoma growth and modulates immune response in a non-clinical model. Scientific Reports, 2020, 10, 5876.	3.3	10
23	Phoneutria nigriventer Venom: Action in the Central Nervous System. , 2016, , 175-202.		8
24	Spider venom components decrease glioblastoma cell migration and invasion through RhoA-ROCK and Na+/K+-ATPase \hat{l}^22 : potential molecular entities to treat invasive brain cancer. Cancer Cell International, 2020, 20, 576.	4.1	7
25	The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages. Peptides, 2021, 146, 170648.	2.4	7
26	The Role of NO/cGMP Signaling on Neuroinflammation: A New Therapeutic Opportunity. , 2017, , .		6
27	PnTx2-6 (or Î'-CNTX-Pn2a), a toxin from Phoneutria nigriventer spider venom, releases l-glutamate from rat brain synaptosomes involving Na+ and Ca2+ channels and changes protein expression at the blood-brain barrier. Toxicon, 2018, 150, 280-288.	1.6	5
28	Components from spider venom activate macrophages against glioblastoma cells: new potential adjuvants for anticancer immunotherapy. Journal of Biochemistry, 2021, 170, 51-68.	1.7	5
29	Can tetracyclines ensure help in multiple sclerosis immunotherapy?. Journal of Clinical and Translational Research, 2021, 7, 22-33.	0.3	2
30	Isolated Components From Spider Venom Targeting Human Glioblastoma Cells and Its Potential Combined Therapy With Rapamycin. Frontiers in Molecular Biosciences, 2022, 9, 752668.	3.5	2
31	Paracoccidioides brasiliensis infection increases regulatory T cell counts in female C57BL/6 mice infected via two distinct routes. Immunobiology, 2020, 225, 151963.	1.9	1
32	Phoneutria nigriventer Venom: Action in the Central Nervous System., 2015,, 1-23.		0