
Vineet D Menachery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1822598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 2022, 602, 294-299.	27.8	364
2	Analytical characterization of the SARS-CoV-2 EURM-017 reference material. Clinical Biochemistry, 2022, 101, 19-25.	1.9	5
3	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
4	Erratum for Vanderheiden et al., "CCR2 Signaling Restricts SARS-CoV-2 Infection― MBio, 2022, , e0025922.	4.1	0
5	Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Reports, 2022, 39, 110829.	6.4	214
6	LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Reports, 2022, 39, 110812.	6.4	287
7	Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathogens, 2022, 18, e1010627.	4.7	85
8	Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 2021, 592, 116-121.	27.8	1,380
9	<scp>SARSâ€CoVâ€2</scp> neutralization and serology testing of <scp>COVIDâ€19</scp> convalescent plasma from donors with nonsevere disease. Transfusion, 2021, 61, 17-23.	1.6	25
10	Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection in Collaborative Cross mice. PLoS Pathogens, 2021, 17, e1009287.	4.7	22
11	Engineering SARS-CoV-2 using a reverse genetic system. Nature Protocols, 2021, 16, 1761-1784.	12.0	137
12	Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. PLoS Pathogens, 2021, 17, e1009292.	4.7	76
13	Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591, 293-299.	27.8	579
14	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	12.8	148
15	Immune Profiling to Determine Early Disease Trajectories Associated With Coronavirus Disease 2019 Mortality Rate: A Substudy from the ACTT-1 Trial. Journal of Infectious Diseases, 2021, 223, 1339-1344.	4.0	2
16	Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine, 2021, 27, 620-621.	30.7	562
17	A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity, 2021, 54, 542-556.e9.	14.3	72
18	The variant gambit: COVID-19's next move. Cell Host and Microbe, 2021, 29, 508-515.	11.0	305

#	Article	IF	CITATIONS
19	A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication without virulence. Cell, 2021, 184, 2229-2238.e13.	28.9	51
20	Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics, 2021, 22, 287.	2.6	39
21	Evaluation of Cellular and Serological Responses to Acute SARS-CoV-2 Infection Demonstrates the Functional Importance of the Receptor-Binding Domain. Journal of Immunology, 2021, 206, 2605-2613.	0.8	7
22	TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009599.	4.7	39
23	SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nature Communications, 2021, 12, 3587.	12.8	71
24	Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature, 2021, 595, 718-723.	27.8	128
25	Cutting Edge: Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. Journal of Immunology, 2021, 207, 376-379.	0.8	124
26	Binding and entering: COVID finds a new home. PLoS Pathogens, 2021, 17, e1009857.	4.7	9
27	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	12.6	459
28	Tiled-ClickSeq for targeted sequencing of complete coronavirus genomes with simultaneous capture of RNA recombination and minority variants. ELife, 2021, 10, .	6.0	22
29	Catch Me if You Can: Superspreading of COVID-19. Trends in Microbiology, 2021, 29, 919-929.	7.7	34
30	Coagulation and wound repair during COVID-19. Journal of Heart and Lung Transplantation, 2021, 40, 1076-1081.	0.6	2
31	Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biology, 2021, 19, e3001284.	5.6	54
32	CCR2 Signaling Restricts SARS-CoV-2 Infection. MBio, 2021, 12, e0274921.	4.1	38
33	A new tool to probe SARS-CoV-2 variants. Science, 2021, 374, 1557-1558.	12.6	3
34	Immune predictors of mortality following RNA virus infection. Journal of Infectious Diseases, 2020, 221, 882-889.	4.0	10
35	Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection. Journal of Virology, 2020, 94, .	3.4	162
36	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	6.4	742

#	Article	IF	CITATIONS
37	A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nature Communications, 2020, 11, 5214.	12.8	179
38	Topoisomerase III-Î ² is required for efficient replication of positive-sense RNA viruses. Antiviral Research, 2020, 182, 104874.	4.1	17
39	Complex Genetic Architecture Underlies Regulation of Influenza-A-Virus-Specific Antibody Responses in the Collaborative Cross. Cell Reports, 2020, 31, 107587.	6.4	31
40	Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures. Journal of Virology, 2020, 94, .	3.4	250
41	A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nature Communications, 2020, 11, 4059.	12.8	266
42	Quantitative SARS-CoV-2 Serology in Children With Multisystem Inflammatory Syndrome (MIS-C). Pediatrics, 2020, 146, .	2.1	113
43	Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of Virology, 2020, 94,	3.4	303
44	Development of a Rapid Focus Reduction Neutralization Test Assay for Measuring SARS oVâ€2 Neutralizing Antibodies. Current Protocols in Immunology, 2020, 131, e116.	3.6	111
45	Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Emerging Infectious Diseases, 2020, 26, 1266-1273.	4.3	523
46	The search for a COVID-19 animal model. Science, 2020, 368, 942-943.	12.6	86
47	Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Reports Medicine, 2020, 1, 100040.	6.5	421
48	Return of the Coronavirus: 2019-nCoV. Viruses, 2020, 12, 135.	3.3	932
49	An Infectious cDNA Clone of SARS-CoV-2. Cell Host and Microbe, 2020, 27, 841-848.e3.	11.0	617
50	Novel Ionophores Active against La Crosse Virus Identified through Rapid Antiviral Screening. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	23
51	Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity. Journal of Virology, 2019, 93, .	3.4	47
52	Middle East Respiratory Syndrome Vaccine Candidates: Cautious Optimism. Viruses, 2019, 11, 74.	3.3	65
53	Shortening of Zika virus CD-loop reduces neurovirulence while preserving antigenicity. PLoS Neglected Tropical Diseases, 2019, 13, e0007212.	3.0	4
54	MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1012-E1021.	7.1	142

#	Article	IF	CITATIONS
55	Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Virology, 2018, 517, 30-37.	2.4	14
56	Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. Journal of Virology, 2018, 92, .	3.4	33
57	SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus). Viruses, 2018, 10, 727.	3.3	21
58	Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. MBio, 2018, 9, .	4.1	557
59	Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines. Journal of Virology, 2018, 92, .	3.4	58
60	CC002/Unc females are mouse models of exercise-induced paradoxical fat response. Physiological Reports, 2018, 6, e13716.	1.7	9
61	Jumping species—a mechanism for coronavirus persistence and survival. Current Opinion in Virology, 2017, 23, 1-7.	5.4	110
62	Epitope Addition and Ablation via Manipulation of a Dengue Virus Serotype 1 Infectious Clone. MSphere, 2017, 2, .	2.9	14
63	CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis. Journal of Infectious Diseases, 2017, 216, 1196-1204.	4.0	15
64	MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis. MBio, 2017, 8, .	4.1	126
65	Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis. MSphere, 2017, 2, .	2.9	92
66	Broad-spectrum antiviral CS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 2017, 9, .	12.4	1,279
67	Allelic Variation in the Toll-Like Receptor Adaptor Protein <i>Ticam2</i> Contributes to SARS-Coronavirus Pathogenesis in Mice. G3: Genes, Genomes, Genetics, 2017, 7, 1653-1663.	1.8	75
68	SARS-like WIV1-CoV poised for human emergence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3048-3053.	7.1	373
69	Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genetics, 2015, 11, e1005504.	3.5	137
70	New Metrics for Evaluating Viral Respiratory Pathogenesis. PLoS ONE, 2015, 10, e0131451.	2.5	60
71	MERS Vaccine Candidate Offers Promise, but Questions Remain. EBioMedicine, 2015, 2, 1292-1293.	6.1	0
72	A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine, 2015, 21, 1508-1513.	30.7	753

#	Article	IF	CITATIONS
73	Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses. MBio, 2014, 5, e01174-14.	4.1	246
74	A Mouse Model for <i>Betacoronavirus</i> Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant. MBio, 2014, 5, e00047-14.	4.1	55
75	A comprehensive collection of systems biology data characterizing the host response to viral infection. Scientific Data, 2014, 1, 140033.	5.3	62
76	Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates. BMC Genomics, 2014, 15, 1161.	2.8	31
77	Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments. Virus Research, 2014, 194, 191-199.	2.2	105
78	Attenuation and Restoration of Severe Acute Respiratory Syndrome Coronavirus Mutant Lacking 2′-O-Methyltransferase Activity. Journal of Virology, 2014, 88, 4251-4264.	3.4	194
79	Evaluation of Serologic and Antigenic Relationships Between Middle Eastern Respiratory Syndrome Coronavirus and Other Coronaviruses to Develop Vaccine Platforms for the Rapid Response to Emerging Coronaviruses. Journal of Infectious Diseases, 2014, 209, 995-1006.	4.0	100
80	Bugs in the system. Immunological Reviews, 2013, 255, 256-274.	6.0	15
81	Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus. MBio, 2013, 4, e00165-13.	4.1	250
82	Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury. MBio, 2013, 4, .	4.1	251
83	Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16157-16162.	7.1	257
84	Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells. Journal of Virology, 2013, 87, 3885-3902.	3.4	140
85	Corneal Replication Is an Interferon Response-Independent Bottleneck for Virulence of Herpes Simplex Virus 1 in the Absence of Virion Host Shutoff. Journal of Virology, 2012, 86, 7692-7695.	3.4	9
86	Interferon Regulatory Factor 3-Dependent Pathways Are Critical for Control of Herpes Simplex Virus Type 1 Central Nervous System Infection. Journal of Virology, 2010, 84, 9685-9694.	3.4	42
87	Control of Herpes Simplex Virus Replication Is Mediated through an Interferon Regulatory Factor 3-Dependent Pathway. Journal of Virology, 2009, 83, 12399-12406.	3.4	19
88	Herpes Simplex Virus Virion Host Shutoff Attenuates Establishment of the Antiviral State. Journal of Virology, 2008, 82, 5527-5535.	3.4	78