Aming Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/182165/publications.pdf Version: 2024-02-01

AMINC XIE

#	Article	IF	CITATIONS
1	Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 100, 206-215.	5.6	48
2	Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption. Composites Part B: Engineering, 2022, 228, 109424.	5.9	87
3	Heteroatom-free conjugated tetraphenylethylene polymers for selectively fluorescent detection of tetracycline. Analytica Chimica Acta, 2022, 1190, 339236.	2.6	32
4	18α-Glycyrrhetinic acid aggregation-induced emission probes for visual fluorescence detection of explosive as well multi-functional applications. New Journal of Chemistry, 2022, 46, 1896-1904.	1.4	2
5	Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition. Analytica Chimica Acta, 2022, 1192, 339343.	2.6	7
6	Molten salt-directed Ni3S2/C nanocomposite with advanced dielectric and magnetic properties for efficient microwave absorption. Journal of Alloys and Compounds, 2022, 902, 163713.	2.8	14
7	Dendritic Hydrogels with Robust Inherent Antibacterial Properties for Promoting Bacteria-Infected Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 11144-11155.	4.0	116
8	Pyrene-based sulfonated organic porous materials for rapid adsorption of cationic dyes in water. Environmental Technology (United Kingdom), 2022, , 1-12.	1.2	0
9	Connecting of conjugate microporous polymer nanoparticles by polypyrrole via sulfonic acid doping to form conductive nanocomposites for excellent microwaves absorption. Composites Science and Technology, 2022, 221, 109350.	3.8	27
10	Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application. Journal of Materials Science and Technology, 2022, 119, 37-44.	5.6	59
11	A facile molten salt synthesis route for a C/MoS2/Co9S8 complex with multiple heterogeneous interfaces and excellent dielectric and magnetic properties for effective microwave absorption. Ceramics International, 2022, 48, 20760-20768.	2.3	3
12	Sulfonated tetraphenylethylene polymers with negative charges for high-capacity removal of organic dyes from waste water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128948.	2.3	6
13	Rapid chromium reduction by metal-free organic polymer photocatalysis via molecular engineering. Journal of Hazardous Materials, 2022, 434, 128938.	6.5	20
14	Synthesis of cationic hydrogels with tunable physicochemical properties for antibacterial applications. European Polymer Journal, 2022, 173, 111228.	2.6	7
15	Single crystal to polycrystal: Enhanced dielectric loss and electromagnetic wave absorption of MoO2 ceramic at Gigahertz. Ceramics International, 2022, 48, 29715-29721.	2.3	46
16	Ultrafine gold nanoparticles dispersed in conjugated microporous polymers with sulfhydryl functional groups to improve the reducing activity of 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129459.	2.3	5
17	Electrically conductive Two-dimensional Metal-Organic frameworks for superior electromagnetic wave absorption. Chemical Engineering Journal, 2022, 446, 137409.	6.6	58
18	Dielectric properties and microwaves response behavior of polypyrrole-derived N-doped carbon nanotubes. Journal of Materials Science: Materials in Electronics, 2021, 32, 25820-25828.	1.1	1

#	Article	IF	CITATIONS
19	Nickel-assisted synthesis of magnetic bamboo-shaped N-doped carbon nanostructure for excellent microwaves absorption. Synthetic Metals, 2021, 272, 116644.	2.1	18
20	Carbon encapsulation of MoS2 nanosheets to tune their interfacial polarization and dielectric properties for electromagnetic absorption applications. Journal of Materials Chemistry C, 2021, 9, 537-546.	2.7	13
21	A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior. Journal of Materials Chemistry C, 2021, 9, 3316-3323.	2.7	89
22	Confining Palladium Nanoparticles in Microporous Tetrastyrene Polymer Enables Efficient Size-Selective Heterogeneous Catalysis. ACS Applied Nano Materials, 2021, 4, 3869-3876.	2.4	19
23	Tuning the Dielectric and Microwaves Absorption Properties of N-Doped Carbon Nanotubes by Boron Insertion. Nanomaterials, 2021, 11, 1164.	1.9	14
24	MOFâ´'Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Composites Part B: Engineering, 2021, 211, 108643.	5.9	83
25	Pyrene Derived aggregation-induced emission sensor for highly selective detection of explosive CL-20. Journal of Luminescence, 2021, 233, 117871.	1.5	8
26	Tetraphenylethylene-vitamin E Conjugates as sensitive aggregation-induced emission probes for selective detection of explosive FOX-7. Analytica Chimica Acta, 2021, 1164, 338525.	2.6	6
27	Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. Materials, 2021, 14, 4148.	1.3	31
28	Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 26151.	1.1	1
29	Conductive Fibrous Metalâ€Cyanoquinone Complexes with Excellent Microwave Absorption and Shielding Effectiveness at Ultrathin Thickness. Advanced Materials Interfaces, 2021, 8, 2100712.	1.9	20
30	Multiple-loss-enhanced NiOx@carbon spheres/reduced graphene oxide-based composite for tuneable elimination of electromagnetic signals. Ceramics International, 2021, 47, 18157-18166.	2.3	7
31	Tuning electromagnetic absorption properties of transition metal oxides by hydrogenation with nascent hydrogen. Chemical Engineering Journal, 2021, 417, 127980.	6.6	18
32	Ni@Carbon nanocomposites with hierarchical three-dimensional network for electromagnetic waves absorption. Ceramics International, 2021, 47, 27577-27585.	2.3	4
33	TTF-TCNQ derived N,S-codoped carbon with multiple macropores for excellent electromagnetic wave adsorption. Synthetic Metals, 2021, 280, 116877.	2.1	11
34	Tetraphenylethylene-cholesterol conjugates as sensitive aggregation-induced emission probe for selective detection of explosive FOX-7. Journal of Luminescence, 2021, 238, 118318.	1.5	5
35	Core-shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption. Chemical Engineering Journal, 2021, 423, 130307.	6.6	51
36	Biomass-based carbon materials derived from Cyperus malaccensis Lam. var. brevifolius Bocklr with efficient microwave absorption performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 26202-26212.	1.1	2

#	Article	IF	CITATIONS
37	Controllable Fabrication of SiC@C-Fe3O4 Hybrids and Their Excellent Electromagnetic Absorption Properties. Nanomaterials, 2021, 11, 3438.	1.9	3
38	Protonic doping brings tuneable dielectric and electromagnetic attenuated properties for polypyrrole nanofibers. Chemical Engineering Journal, 2020, 381, 122615.	6.6	42
39	Sulfonate-grafted conjugated microporous polymers for fast removal of cationic dyes from water. Chemical Engineering Journal, 2020, 391, 123591.	6.6	42
40	The synthesis of aggregation-induced emitting vitamin E derivative and its selective fluorescent response toward Fe3+. Tetrahedron Letters, 2020, 61, 152445.	0.7	2
41	Dielectric loss behavior and microwaves absorption properties of TiB ₂ ceramic. Materials Research Express, 2020, 7, 046301.	0.8	8
42	Fluorescent conjugated microporous polymer (CMP) derived sensor array for multiple Organic/Inorganic contaminants detection. Sensors and Actuators B: Chemical, 2020, 320, 128448.	4.0	29
43	Hollow Polypyrrole Nanofiber-Based Self-Assembled Aerogel: Large-Scale Fabrication and Outstanding Performance in Electromagnetic Pollution Management. Industrial & Engineering Chemistry Research, 2020, 59, 7604-7610.	1.8	10
44	Ultrathin ZnIn ₂ S ₄ Nanosheets Anchored on Ti ₃ C ₂ T _{<i>X</i>} MXene for Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 11287-11292.	7.2	416
45	0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Applied Catalysis B: Environmental, 2020, 278, 119298.	10.8	256
46	Lipophilic Red-Emitting Oligomeric Organic Dots for Moisture Detection and Cell Imaging. ACS Applied Nano Materials, 2020, 3, 1942-1949.	2.4	7
47	Ultrathin ZnIn ₂ S ₄ Nanosheets Anchored on Ti ₃ C ₂ T _{<i>X</i>} MXene for Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 11383-11388.	1.6	69
48	Conjugate Microporous Polymer-Derived Conductive Porous Carbon Nanoparticles with Narrow Pore-Size Distribution for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2020, 3, 4553-4561.	2.4	19
49	Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption. Chemical Engineering Journal, 2020, 398, 125591.	6.6	60
50	Dual-Interfacial Polarization Enhancement to Design Tunable Microwave Absorption Nanofibers of SiC@C@PPy. ACS Applied Electronic Materials, 2020, 2, 1505-1513.	2.0	41
51	Dielectric loss and nonlinear resonance properties of zirconium boride (ZrB ₂) high-temperature ceramic. Materials Research Express, 2019, 6, 096312.	0.8	0
52	Magnetized polypyrrole and its enhanced electromagnetic attenuation performance. Applied Physics Letters, 2019, 115, 013101.	1.5	18
53	Dramatic red fluorescence enhancement and emission red shift of carbon dots following Zn/ZnO decoration. Luminescence, 2019, 34, 759-766.	1.5	14
54	Two-dimensional copper(i) thiophenolates: a well-constructed conductive Cu–S network for excellent electromagnetic wave absorption. Journal of Materials Chemistry C, 2019, 7, 11621-11631.	2.7	10

Aming Xie

#	Article	IF	CITATIONS
55	One-pot synthesis of conjugated microporous polymers loaded with superfine nano-palladium and their micropore-confinement effect on heterogeneously catalytic reduction. Journal of Catalysis, 2019, 378, 42-50.	3.1	28
56	Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Composites Science and Technology, 2019, 174, 232-240.	3.8	84
57	The synthesis of core–shell nanowires with intense dielectric and magnetic resonance properties at microwave frequency. Journal of Materials Chemistry C, 2019, 7, 3590-3597.	2.7	13
58	Controllable Coating of Polypyrrole on Silicon Carbide Nanowires as a Core–Shell Nanostructure: A Facile Method To Enhance Attenuation Characteristics against Electromagnetic Radiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2100-2106.	3.2	67
59	Sandwich CoFe ₂ O ₄ /RGO/CoFe ₂ O ₄ Nanostructures for High-Performance Electromagnetic Absorption. ACS Applied Nano Materials, 2019, 2, 315-324.	2.4	39
60	Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Materials Chemistry and Physics, 2018, 208, 198-206.	2.0	33
61	Fluorine-Doped Cationic Carbon Dots for Efficient Gene Delivery. ACS Applied Nano Materials, 2018, 1, 2376-2385.	2.4	86
62	Tetrazole amphiphile inducing growth of conducting polymers hierarchical nanostructures and their electromagnetic absorption properties. Nanotechnology, 2018, 29, 215604.	1.3	10
63	Selfâ€Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties. Macromolecular Rapid Communications, 2018, 39, 1700591.	2.0	34
64	Controlled hydrothermal temperature provides tunable permittivity and an improved electromagnetic absorption performance of reduced graphene oxide. RSC Advances, 2018, 8, 33065-33071.	1.7	7
65	Superfine palladium nanocrystals on a polyphenylene framework for photocatalysis. Catalysis Science and Technology, 2018, 8, 5201-5206.	2.1	11
66	Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Materials and Design, 2018, 154, 192-202.	3.3	84
67	Mussel-inspired synthesis of amino acid modified magnetic nanoparticles for high-efficiency dye adsorption. Materials Research Express, 2018, 5, 065014.	0.8	1
68	Two-dimensional (2D) few-layers WS2 nanosheets: An ideal nanomaterials with tunable electromagnetic absorption performance. Applied Physics Letters, 2018, 113, .	1.5	38
69	The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide. Applied Physics Letters, 2018, 112, .	1.5	45
70	Few-layer black phosphorus: A bright future in electromagnetic absorption. Materials Letters, 2017, 193, 30-33.	1.3	22
71	Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. Journal of Materials Chemistry C, 2017, 5, 2175-2181.	2.7	134
72	Highly N,P-doped carbon dots: Rational design, photoluminescence and cellular imaging. Mikrochimica Acta, 2017, 184, 2933-2940.	2.5	72

#	Article	IF	CITATIONS
73	Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination. Nanotechnology, 2017, 28, 315701.	1.3	8
74	In Situ Stringing of Metal Organic Frameworks by SiC Nanowires for High-Performance Electromagnetic Radiation Elimination. ACS Applied Materials & Interfaces, 2017, 9, 33041-33048.	4.0	70
75	Large Emission Red-Shift of Carbon Dots by Fluorine Doping and Their Applications for Red Cell Imaging and Sensitive Intracellular Ag ⁺ Detection. Journal of Physical Chemistry C, 2017, 121, 26558-26565.	1.5	125
76	Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Materials Chemistry and Physics, 2017, 199, 340-347.	2.0	55
77	Synthesis of hollow Cu _{1.8} S nano-cubes for electromagnetic interference shielding. Nanoscale, 2017, 9, 10961-10965.	2.8	31
78	Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption. Materials Research Express, 2016, 3, 055008.	0.8	12
79	Three-dimensional (3D) α-Fe2O3/polypyrrole (PPy) nanocomposite for effective electromagnetic absorption. AlP Advances, 2016, 6, .	0.6	17
80	A core–shell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Advances, 2016, 6, 43056-43059.	1.7	47
81	Microwave absorption of a TiO ₂ @PPy hybrid and its nonlinear dielectric resonant attenuation mechanism. Journal Physics D: Applied Physics, 2016, 49, 385502.	1.3	19
82	The hybrid of SnO2nanoparticle and polypyrrole aerogel: an excellent electromagnetic wave absorbing materials. Materials Research Express, 2016, 3, 075023.	0.8	12
83	Using γ-Fe ₂ O ₃ to tune the electromagnetic properties of three-dimensional (3D) polypyrrole (PPy) and its broadband electromagnetic absorber. RSC Advances, 2016, 6, 68128-68133.	1.7	16
84	In situ growth of MoS ₂ nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. Physical Chemistry Chemical Physics, 2016, 18, 24931-24936.	1.3	81
85	Growing 3D ZnO nano-crystals on 1D SiC nanowires: enhancement of dielectric properties and excellent electromagnetic absorption performance. Journal of Materials Chemistry C, 2016, 4, 8897-8902.	2.7	48
86	A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution. Journal of Materials Chemistry C, 2016, 4, 82-88.	2.7	54
87	Solid-state synthesis of a conducting polythiophene as efficient Pt-free thin film counter electrode for dye-sensitized solar cells. Materials Letters, 2016, 174, 91-94.	1.3	10
88	Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catalysis Science and Technology, 2016, 6, 1764-1771.	2.1	75
89	Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. Journal of Applied Physics, 2015, 118, .	1.1	38
90	Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Applied Physics Letters, 2015, 106, .	1.5	100

#	Article	IF	CITATIONS
91	Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. Journal of Materials Chemistry A, 2015, 3, 14358-14369.	5.2	373
92	In situ preparation of ultralight three-dimensional polypyrrole/nano SiO 2 composite aerogels with enhanced electromagnetic absorption. Composites Science and Technology, 2015, 117, 32-38.	3.8	35
93	Cationic Charged Polymer Vesicles from Amphiphilic PEI-g-PSSA-g-PEI as Potential Gene Delivery Vehicles. Australian Journal of Chemistry, 2015, 68, 806.	0.5	7
94	One-pot synthesis of biomass-derived carbonaceous spheres for excellent microwave absorption at the Ku band. RSC Advances, 2015, 5, 40531-40535.	1.7	41
95	An Environmentally Friendly Method for <i>N</i> â€Methylation of 5â€6ubstituted 1 <i>H</i> â€Tetrazoles with a Green Methylating Reagent: Dimethyl Carbonate. Journal of Heterocyclic Chemistry, 2015, 52, 1483-1487.	1.4	9
96	Natural biological template for ZnO nanoparticle growth and photocatalytic dye degradation under visible light. RSC Advances, 2015, 5, 84406-84409.	1.7	13
97	The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synthetic Metals, 2015, 210, 156-164.	2.1	36
98	The oxidation of alcohols with O-iodoxybenzoic acid (IBX) in aqueous nanomicelles at room temperature. Tetrahedron, 2014, 70, 3514-3519.	1.0	18
99	Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Carbohydrate Polymers, 2014, 105, 135-144.	5.1	78
100	Heterocycle-substituted tetrazole ligands for copper-catalysed aerobic oxidation of alcohols. Tetrahedron, 2014, 70, 9791-9796.	1.0	17
101	Synthesis, characterization of poly(m-phenylenediamine)/palygorskite and its unusual and reactive adsorbability to chromium(vi). New Journal of Chemistry, 2014, 38, 777.	1.4	30
102	A releasable disulfide carbonate linker for polyethyleneimine (PEI)-based gene vectors. New Journal of Chemistry, 2014, 38, 5207-5214.	1.4	18
103	Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. Journal of Materials Chemistry B, 2014, 2, 3646.	2.9	83
104	Construction of efficacious hepatoma-targeted nanomicelles non-covalently functionalized with galactose for drug delivery. Polymer Chemistry, 2014, 5, 7121-7130.	1.9	14
105	The Synthesis of Tetrazoles in Nanometer Aqueous Micelles at Room Temperature. European Journal of Organic Chemistry, 2014, 2014, 436-441.	1.2	18
106	Oneâ€Pot Synthesis of Triazoles from Organic Halides and Alkynes in Nonionic Nanomicelles at Room Temperature. Asian Journal of Organic Chemistry, 2014, 3, 1278-1283.	1.3	3
107	The Synthesis of 5-Substituted 1 <i>H</i> -Tetrazoles in Molten Tetrabutylammonium Bromide. Journal of Chemical Research, 2013, 37, 665-667.	0.6	6
108	Modulating surficial oxygen vacancy of the VO ₂ nanostructure to boost its electromagnetic absorption performance. Journal of Materials Chemistry C, 0, , .	2.7	56

#	Article	IF	CITATIONS
109	Electrically Driven Hydrogenation of MoO ₃ Nanoparticles in Protonic Acid for Oxidative Degradation of Micropollutants. ACS Applied Nano Materials, 0, , .	2.4	2