
Martin H Steinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1821184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mortality In Sickle Cell Disease Life Expectancy and Risk Factors for Early Death. New England Journal of Medicine, 1994, 330, 1639-1644.	27.0	2,879
2	CRISPR-Cas9 Gene Editing for Sickle Cell Disease and Î ² -Thalassemia. New England Journal of Medicine, 2021, 384, 252-260.	27.0	939
3	Sickle Cell Disease. New England Journal of Medicine, 2017, 376, 1561-1573.	27.0	898
4	Effect of Hydroxyurea on Mortality and Morbidity in Adult Sickle Cell Anemia. JAMA - Journal of the American Medical Association, 2003, 289, 1645.	7.4	741
5	Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Reviews, 2007, 21, 37-47.	5.7	728
6	Point and 5â€year period prevalence of neuropsychiatric symptoms in dementia: the Cache County Study. International Journal of Geriatric Psychiatry, 2008, 23, 170-177.	2.7	579
7	Management of Sickle Cell Disease. New England Journal of Medicine, 1999, 340, 1021-1030.	27.0	557
8	Erythrocyte Adherence to Endothelium in Sickle-Cell Anemia. New England Journal of Medicine, 1980, 302, 992-995.	27.0	498
9	Intravascular hemolysis and the pathophysiology of sickle cell disease. Journal of Clinical Investigation, 2017, 127, 750-760.	8.2	435
10	Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature, 2004, 429, 75-79.	27.8	395
11	Fetal hemoglobin in sickle cell anemia. Blood, 2011, 118, 19-27.	1.4	392
12	Spontaneous oxygen radical generation by sickle erythrocytes Journal of Clinical Investigation, 1982, 70, 1253-1259.	8.2	388
13	The risks and benefits of longâ€ŧerm use of hydroxyurea in sickle cell anemia: A 17.5 year followâ€up. American Journal of Hematology, 2010, 85, 403-408.	4.1	385
14	Fetal Hemoglobin in Sickle Cell Anemia: Determinants of Response to Hydroxyurea. Blood, 1997, 89, 1078-1088.	1.4	368
15	Treating Depression in Alzheimer Disease. Archives of General Psychiatry, 2003, 60, 737.	12.3	361
16	Genetic Signatures of Exceptional Longevity in Humans. PLoS ONE, 2012, 7, e29848.	2.5	340
17	Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nature Genetics, 2005, 37, 435-440.	21.4	300
18	Hydroxyurea and Sickle Cell Anemia Clinical Utility of a Myelosuppressive "Switching―Agent. Medicine (United States), 1996, 75, 300-326.	1.0	294

#	Article	IF	CITATIONS
19	Predicting clinical severity in sickle cell anaemia. British Journal of Haematology, 2005, 129, 465-481.	2.5	284
20	Neuropsychiatric disturbance in Alzheimer's disease clusters into three groups: the Cache County study. International Journal of Geriatric Psychiatry, 2001, 16, 1043-1053.	2.7	252
21	Neuropsychiatric Symptoms as Predictors of Progression to Severe Alzheimer's Dementia and Death: The Cache County Dementia Progression Study. American Journal of Psychiatry, 2015, 172, 460-465.	7.2	249
22	Natural History of Blood Pressure in Sickle Cell Disease: Risks for Stroke and Death Associated with Relative Hypertension in Sickle Cell Anemia. American Journal of Medicine, 1997, 102, 171-177.	1.5	224
23	Genetic modifiers of sickle cell disease. American Journal of Hematology, 2012, 87, 795-803.	4.1	218
24	The paradox of hemoglobin SC disease. Blood Reviews, 2003, 17, 167-178.	5.7	212
25	Progression of Cognitive, Functional, and Neuropsychiatric Symptom Domains in a Population Cohort With Alzheimer Dementia: The Cache County Dementia Progression Study. American Journal of Geriatric Psychiatry, 2011, 19, 532-542.	1.2	198
26	An Official American Thoracic Society Clinical Practice Guideline: Diagnosis, Risk Stratification, and Management of Pulmonary Hypertension of Sickle Cell Disease. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 727-740.	5.6	197
27	Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Sertraline in the Treatment of Depression Complicating Alzheimer's Disease: Initial Results From the Depression in Alzheimer's Disease Study. American Journal of Psychiatry, 2000, 157, 1686-1689.	7.2	185
28	Sickle Cell Anemia, the First Molecular Disease: Overview of Molecular Etiology, Pathophysiology, and Therapeutic Approaches. Scientific World Journal, The, 2008, 8, 1295-1324.	2.1	184
29	Hemolysis-associated priapism in sickle cell disease. Blood, 2005, 106, 3264-3267.	1.4	183
30	Fetal hemoglobin in sickle cell anemia: a glass half full?. Blood, 2014, 123, 481-485.	1.4	181
31	Abnormal Pulmonary Function in Adults with Sickle Cell Anemia. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1264-1269.	5.6	177
32	Physical Aggression in Dementia Patients and Its Relationship to Depression. American Journal of Psychiatry, 1999, 156, 66-71.	7.2	173
33	Purified Poloxamer 188 for Treatment of Acute Vaso-occlusive Crisis of Sickle Cell Disease. JAMA - Journal of the American Medical Association, 2001, 286, 2099.	7.4	173
34	Atypical Antipsychotic Use in Patients With Dementia: Managing Safety Concerns. American Journal of Psychiatry, 2012, 169, 900-906.	7.2	171
35	N-Terminal Pro-Brain Natriuretic Peptide Levels and Risk of Death in Sickle Cell Disease. JAMA - Journal of the American Medical Association, 2006, 296, 310.	7.4	169
36	A network model to predict the risk of death in sickle cell disease. Blood, 2007, 110, 2727-2735.	1.4	159

#	Article	IF	CITATIONS
37	BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies. Blood Cells, Molecules, and Diseases, 2008, 41, 255-258.	1.4	158
38	Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood, 2008, 111, 402-410.	1.4	157
39	Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGFâ€ <i>β</i> /BMP pathway. British Journal of Haematology, 2006, 133, 570-578.	2.5	155
40	The General Medical Health Rating: A Bedside Global Rating of Medical Comorbidity in Patients with Dementia. Journal of the American Geriatrics Society, 1999, 47, 487-491.	2.6	154
41	Chronic Hyper-Hemolysis in Sickle Cell Anemia: Association of Vascular Complications and Mortality with Less Frequent Vasoocclusive Pain. PLoS ONE, 2008, 3, e2095.	2.5	152
42	The persistence of neuropsychiatric symptoms in dementia: the Cache County Study. International Journal of Geriatric Psychiatry, 2004, 19, 19-26.	2.7	149
43	Genetic Etiologies for Phenotypic Diversity in Sickle Cell Anemia. Scientific World Journal, The, 2009, 9, 46-67.	2.1	146
44	Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood, 2010, 115, 1815-1822.	1.4	146
45	Gender and haplotype effects upon hematological manifestations of adult sickle cell anemia. American Journal of Hematology, 1995, 48, 175-181.	4.1	120
46	Laboratory profile of sickle cell disease: A cross-sectional analysis. Journal of Clinical Epidemiology, 1992, 45, 893-909.	5.0	119
47	The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood, 2013, 122, 376-385.	1.4	119
48	A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood, 2011, 117, 4935-4945.	1.4	116
49	Sickle Cell Anemia as a Possible State of Enhanced Anti-Apoptotic Tone: Survival Effect of Vascular Endothelial Growth Factor on Circulating and Unanchored Endothelial Cells. Blood, 1999, 93, 3824-3830.	1.4	113
50	Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea. Pharmacogenomics Journal, 2007, 7, 386-394.	2.0	109
51	Wandering behaviour in community-residing persons with dementia. , 1999, 14, 272-279.		107
52	Incidence, prevalence, and outcomes of depression in residents of a longâ€ŧerm care facility with dementia. International Journal of Geriatric Psychiatry, 2002, 17, 247-253.	2.7	107
53	RheothRx (Poloxamer 188) Injection for the Acute Painful Episode of Sickle Cell Disease: A Pilot Study. Blood, 1997, 90, 2041-2046.	1.4	106
54	Pathophysiology of sickle cell disease: Role of cellular and genetic modifiers. Seminars in Hematology, 2001, 38, 299-306.	3.4	103

#	Article	IF	CITATIONS
55	Sickle cell anemia is associated with reduced nitric oxide bioactivity in peripheral conduit and resistance vessels. American Journal of Hematology, 2003, 74, 104-111.	4.1	103
56	Association of klotho, bone morphogenic protein 6, and annexin A2 polymorphisms with sickle cell osteonecrosis. Blood, 2005, 106, 372-375.	1.4	102
57	Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. British Journal of Haematology, 2012, 156, 259-264.	2.5	97
58	Genetic Signatures of Exceptional Longevity in Humans. Science, 2010, 329, .	12.6	95
59	Minireview: Genetic basis of heterogeneity and severity in sickle cell disease. Experimental Biology and Medicine, 2016, 241, 689-696.	2.4	87
60	Hemoglobin Indianapolis (beta 112[G14] arginine). An unstable beta-chain variant producing the phenotype of severe beta-thalassemia Journal of Clinical Investigation, 1979, 63, 931-938.	8.2	87
61	Characteristics and outcomes of dementia residents in an assisted living facility. International Journal of Geriatric Psychiatry, 2000, 15, 586-593.	2.7	86
62	Disturbance of plasma and platelet thrombospondin levels in sickle cell disease. , 1996, 51, 296-301.		83
63	Genetic modifiers of the severity of sickle cell anemia identified through a genomeâ€wide association study. American Journal of Hematology, 2010, 85, 29-35.	4.1	83
64	Sickle Cell Disease. Hematology American Society of Hematology Education Program, 2004, 2004, 35-47.	2.5	82
65	RNA Editing Genes Associated with Extreme Old Age in Humans and with Lifespan in C. elegans. PLoS ONE, 2009, 4, e8210.	2.5	81
66	Pathophysiologically based drug treatment of sickle cell disease. Trends in Pharmacological Sciences, 2006, 27, 204-210.	8.7	77
67	Modifier genes and sickle cell anemia. Current Opinion in Hematology, 2006, 13, 131-136.	2.5	76
68	Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood, 2012, 120, 1961-1962.	1.4	73
69	Unexpectedly low pulse oximetry measurements associated with variant hemoglobins: A systematic review. American Journal of Hematology, 2010, 85, 882-885.	4.1	72
70	Framing the research agenda for sickle cell trait: Building on the current understanding of clinical events and their potential implications. American Journal of Hematology, 2012, 87, 340-346.	4.1	72
71	Sickle cell disease in <scp>S</scp> audi <scp>A</scp> rabia: the phenotype in adults with the <scp>A</scp> rabâ€ <scp>I</scp> ndian haplotype is not benign. British Journal of Haematology, 2014, 164, 597-604.	2.5	72
72	Clinical diversity of sickle cell anemia: Genetic and cellular modulation of disease severity. American Journal of Hematology, 1983, 14, 405-416.	4.1	71

#	Article	IF	CITATIONS
73	Association of single nucleotide polymorphisms in <i>klotho</i> with priapism in sickle cell anaemia. British Journal of Haematology, 2005, 128, 266-272.	2.5	71
74	Sickle cell bone disease: Response to vitamin D and calcium. American Journal of Hematology, 2008, 83, 271-274.	4.1	68
75	Alpha Thalassaemia in Adults with Sickle-Cell Trait. British Journal of Haematology, 1975, 30, 31-37.	2.5	67
76	Effects of alpha-thalassemia and sickle polymerization tendency on the urine-concentrating defect of individuals with sickle cell trait Journal of Clinical Investigation, 1991, 88, 1963-1968.	8.2	66
77	6 Pathophysiology of sickle cell disease. Best Practice and Research: Clinical Haematology, 1998, 11, 163-184.	1.1	65
78	Vascular factors and risk for neuropsychiatric symptoms in Alzheimer's disease: the Cache County Study. International Psychogeriatrics, 2008, 20, 538-53.	1.0	64
79	Genomeâ€wide association studies and the genetic dissection of complex traits. American Journal of Hematology, 2009, 84, 504-515.	4.1	64
80	Cellular effects of hydroxyurea in Hb SC disease. British Journal of Haematology, 1997, 98, 838-844.	2.5	62
81	BCL11A represses HBG transcription in K562 cells. Blood Cells, Molecules, and Diseases, 2009, 42, 144-149.	1.4	60
82	Pulmonary hypertension and NO in sickle cell. Blood, 2010, 116, 852-854.	1.4	59
83	Pulmonary arterial hypertension and leftâ€sided heart disease in sickle cell disease: Clinical characteristics and association with soluble adhesion molecule expression. American Journal of Hematology, 2008, 83, 547-553.	4.1	58
84	Erythrocyte Clutathione-Peroxidase Deficiency. British Journal of Haematology, 1970, 19, 605-612.	2.5	57
85	Pharmacologic Modulation of Fetal Hemoglobin. Medicine (United States), 2001, 80, 328-344.	1.0	57
86	A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia. PLoS ONE, 2012, 7, e34741.	2.5	55
87	Neonatal screening for sickle cell disease: A cost-effectiveness analysis. Journal of Pediatrics, 1991, 118, 546-554.	1.8	54
88	Association of Polymorphisms of <i>IGF1R</i> and Genes in the Transforming Growth Factor–β/Bone Morphogenetic Protein Pathway with Bacteremia in Sickle Cell Anemia. Clinical Infectious Diseases, 2006, 43, 593-598.	5.8	54
89	Pathophysiology of sickle cell disease: Role of cellular and genetic modifiers. Seminars in Hematology, 2001, 38, 299-306.	3.4	53
90	Association between wind speed and the occurrence of sickle cell acute painful episodes: results of a caseâ€crossover study. British Journal of Haematology, 2008, 143, 433-438.	2.5	52

#	Article	IF	CITATIONS
91	Whole Genome Sequences of a Male and Female Supercentenarian, Ages Greater than 114 Years. Frontiers in Genetics, 2011, 2, 90.	2.3	51
92	Fetal hemoglobin in sickle cell anemia: Genetic studies of the Arab-Indian haplotype. Blood Cells, Molecules, and Diseases, 2013, 51, 22-26.	1.4	50
93	Estimated glomerular filtration rate in sickle cell anemia is associated with polymorphisms of bone morphogenetic protein receptor 1B. American Journal of Hematology, 2007, 82, 179-184.	4.1	48
94	Hemoglobin SE disease—A concise review. American Journal of Hematology, 2007, 82, 643-649.	4.1	46
95	Genetic determinants of haemolysis in sickle cell anaemia. British Journal of Haematology, 2013, 161, 270-278.	2.5	45
96	A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 1076-1085.	4.8	45
97	A long noncoding RNA from the HBS1L-MYB intergenic region on chr6q23 regulates human fetal hemoglobin expression. Blood Cells, Molecules, and Diseases, 2018, 69, 1-9.	1.4	45
98	Diamond-Blackfan Syndrome: Evidence for T-Cell Mediated Suppression of Erythroid Development and a Serum Blocking Factor Associated with Remission. British Journal of Haematology, 1979, 41, 57-68.	2.5	44
99	New Views of Sickle Cell Disease Pathophysiology and Treatment. Hematology American Society of Hematology Education Program, 2000, 2000, 2-17.	2.5	44
100	Vascular risk factors and neuropsychiatric symptoms in Alzheimer's disease: the Cache County Study. International Journal of Geriatric Psychiatry, 2014, 29, 153-159.	2.7	44
101	Pathophysiological-Based Approaches to Treatment of Sickle Cell Disease. Annual Review of Medicine, 2003, 54, 89-112.	12.2	43
102	Climatic and geographic temporal patterns of pain in the Multicenter Study of Hydroxyurea. Pain, 2009, 146, 91-98.	4.2	43
103	Fetal hemoglobin in sickle cell anemia. Blood, 2020, 136, 2392-2400.	1.4	43
104	Mild Sickle Cell Disease. JAMA - Journal of the American Medical Association, 1973, 224, 317.	7.4	42
105	Hydroxyurea: An alternative to transfusion therapy for stroke in sickle cell anemia. American Journal of Hematology, 1995, 50, 140-143.	4.1	41
106	Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. American Journal of Hematology, 2005, 78, 240-242.	4.1	41
107	Clustering by genetic ancestry using genome-wide SNP data. BMC Genetics, 2010, 11, 108.	2.7	40
108	A T-to-G Transversion at Nucleotide â^'567 Upstream of <i>HBG2</i> in a GATA-1 Binding Motif Is Associated with Elevated Hemoglobin F. Molecular and Cellular Biology, 2008, 28, 4386-4393.	2.3	39

#	Article	IF	CITATIONS
109	A GCH1 haplotype confers sexâ€specific susceptibility to pain crises and altered endothelial function in adults with sickle cell anemia. American Journal of Hematology, 2014, 89, 187-193.	4.1	38
110	Comparison of three rating scales as outcome measures for treatment trials of depression in Alzheimer disease: findings from DIADS. International Journal of Geriatric Psychiatry, 2006, 21, 930-936.	2.7	36
111	Notch and Aryl Hydrocarbon Receptor Signaling Impact Definitive Hematopoiesis from Human Pluripotent Stem Cells. Stem Cells, 2018, 36, 1004-1019.	3.2	36
112	Effectiveness of a dedicated day hospital for management of acute sickle cell pain. Haematologica, 2007, 92, 854-854.	3.5	36
113	Sickle cell anemia: Erythrokinetics, blood volumes, and a study of possible determinants of severity. American Journal of Hematology, 1977, 2, 17-23.	4.1	35
114	Ancestry of African Americans with sickle cell disease. Blood Cells, Molecules, and Diseases, 2011, 47, 41-45.	1.4	35
115	Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations. American Journal of Hematology, 2008, 83, 189-195.	4.1	34
116	The Molecular Basis of β Thalassemia, Îβ Thalassemia, and Hereditary Persistence of Fetal Hemoglobin. , 2009, , 323-356.		34
117	Severe sickle cell anemia is associated with increased plasma levels of TNFâ€R1 and VCAMâ€1. American Journal of Hematology, 2011, 86, 220-223.	4.1	34
118	Safety and Efficacy of CTX001 in Patients with Transfusion-Dependent β-Thalassemia and Sickle Cell Disease: Early Results from the Climb THAL-111 and Climb SCD-121 Studies of Autologous CRISPR-CAS9-Modified CD34+ Hematopoietic Stem and Progenitor Cells. Blood, 2020, 136, 3-4.	1.4	34
119	β-Thalassemia in Southwestern Iran. Hemoglobin, 1993, 17, 427-437.	0.8	33
120	Clinical, hematologic and biosynthetic studies in sickle cell-β°-thalassemia: A comparison with sickle cell anemia. American Journal of Hematology, 1976, 1, 35-44.	4.1	32
121	Hypoxic Response Contributes to Altered Gene Expression and Precapillary Pulmonary Hypertension in Patients With Sickle Cell Disease. Circulation, 2014, 129, 1650-1658.	1.6	32
122	HbA ₂ : biology, clinical relevance and a possible target for ameliorating sickle cell disease. British Journal of Haematology, 2015, 170, 781-787.	2.5	32
123	Concordant fetal hemoglobin response to hydroxyurea in siblings with sickle cell disease. American Journal of Hematology, 2003, 72, 121-126.	4.1	31
124	Hemoglobin Titusville, a low oxygen affinity variant hemoglobin, in a family of Northern European background. American Journal of Hematology, 2004, 77, 384-386.	4.1	31
125	Imputation of missing genotypes: an empirical evaluation of IMPUTE. BMC Genetics, 2008, 9, 85.	2.7	31
126	The Association Between Hydroxyurea Treatment and Pain Intensity, Analgesic Use, and Utilization in Ambulatory Sickle Cell Anemia Patients. Pain Medicine, 2011, 12, 697-705.	1.9	31

#	Article	IF	CITATIONS
127	A phased SNP-based classification of sickle cell anemia HBB haplotypes. BMC Genomics, 2017, 18, 608.	2.8	31
128	Variation and heritability of Hb F and F ells among βâ€ŧhalassemia heterozygotes in Hong Kong. American Journal of Hematology, 2008, 83, 458-464.	4.1	30
129	The effects of hydroxycarbamide and magnesium on haemoglobin SC disease: results of the multiâ€centre CHAMPS trial. British Journal of Haematology, 2011, 152, 771-776.	2.5	30
130	Fetal hemoglobin in sickle cell anemia: Saudi patients from the Southwestern province have similar <i>HBB</i> haplotypes but higher HbF levels than African Americans. American Journal of Hematology, 2011, 86, 612-614.	4.1	30
131	Fetal hemoglobin in sickle cell anemia: Molecular characterization of the unusually high fetal hemoglobin phenotype in African Americans. American Journal of Hematology, 2012, 87, 217-219.	4.1	30
132	Cognitive Response to Pharmacological Treatment for Depression in Alzheimer Disease: Secondary Outcomes From the Depression in Alzheimer's Disease Study (DIADS). American Journal of Geriatric Psychiatry, 2004, 12, 491-498.	1.2	29
133	Carcinomatous Meningitis in Small Cell Lung Cancer. American Journal of the Medical Sciences, 1984, 287, 31-33.	1.1	28
134	Identification of oxidative post-translational modification of serum albumin in patients with idiopathic pulmonary arterial hypertension and pulmonary hypertension of sickle cell anemia. Rapid Communications in Mass Spectrometry, 2007, 21, 2195-2203.	1.5	28
135	Bayesian Methods for Multivariate Modeling of Pleiotropic SNP Associations and Genetic Risk Prediction. Frontiers in Genetics, 2012, 3, 176.	2.3	28
136	Prediction of Fetal Hemoglobin in Sickle Cell Anemia Using an Ensemble of Genetic Risk Prediction Models. Circulation: Cardiovascular Genetics, 2014, 7, 110-115.	5.1	27
137	Fetal Hemoglobin in Sickle Hemoglobinopathies: High HbF Genotypes and Phenotypes. Journal of Clinical Medicine, 2020, 9, 3782.	2.4	27
138	Erythrocyte glutathione peroxidase deficiency. American Journal of Medicine, 1971, 50, 542-546.	1.5	26
139	Role of Epistatic (Modifier) Genes in the Modulation of the Phenotypic Diversity of Sickle Cell Anemia. Fetal and Pediatric Pathology, 2001, 20, 123-136.	0.3	26
140	A hierarchical and modular approach to the discovery of robust associations in genome-wide association studies from pooled DNA samples. BMC Genetics, 2008, 9, 6.	2.7	26
141	Monocytes from sickle cell disease patients induce differential pulmonary endothelial gene expression via activation of NF-κB signaling pathway. Molecular Immunology, 2012, 50, 117-123.	2.2	26
142	Is HbA2 level a reliable diagnostic measurement for β-thalassemia trait in people with iron deficiency?. American Journal of Hematology, 2012, 87, 114-116.	4.1	26
143	Acute Hemolytic Anemia Associated With Erythrocyte Glutathione-Peroxidase Deficiency. Archives of Internal Medicine, 1970, 125, 302.	3.8	25
144	Maximum urine concentrating ability in children with Hb SC disease: Effects of hydroxyurea. , 2000, 64, 47-52.		25

#	Article	IF	CITATIONS
145	G6PD deficiency and stroke in the CSSCD. American Journal of Hematology, 2011, 86, 331-331.	4.1	25
146	Sickle Cell Disease. Annals of Internal Medicine, 2011, 155, ITC3.	3.9	25
147	How we prevent and manage infection in sickle cell disease. British Journal of Haematology, 2015, 170, 757-767.	2.5	25
148	Hb Slβ°-Thalassemia due to the ˜1.4-kb deletion is associated with a relatively mild phenotype. American Journal of Hematology, 1991, 38, 108-112.	4.1	23
149	A novel HBA2 gene conversion in cis or trans: "α12 allele―in a Saudi population. Blood Cells, Molecules, and Diseases, 2014, 53, 199-203.	1.4	23
150	Fetal hemoglobin in sickle cell anemia: The Arabâ€Indian haplotype and new therapeutic agents. American Journal of Hematology, 2017, 92, 1233-1242.	4.1	23
151	<i>SIRT1</i> activates the expression of fetal hemoglobin genes. American Journal of Hematology, 2017, 92, 1177-1186.	4.1	23
152	The Interactions of $\hat{I}\pm$ -Thalassemia with Hemoglobinopathies. Hematology/Oncology Clinics of North America, 1991, 5, 453-473.	2.2	22
153	Genomic approaches to identifying targets for treating β hemoglobinopathies. BMC Medical Genomics, 2015, 8, 44.	1.5	22
154	Biomarker signatures of sickle cell disease severity. Blood Cells, Molecules, and Diseases, 2018, 72, 1-9.	1.4	22
155	Modulation of Fetal Hemoglobin Synthesis by Iron Deficiency. New England Journal of Medicine, 1985, 313, 1402-1405.	27.0	21
156	Genome-Wide Meta-Analysis of Systolic Blood Pressure in Children with Sickle Cell Disease. PLoS ONE, 2013, 8, e74193.	2.5	21
157	Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Experimental Biology and Medicine, 2016, 241, 706-718.	2.4	21
158	Clinical trials in sickle cell disease: Adopting the combination chemotherapy paradigm. American Journal of Hematology, 2008, 83, 1-3.	4.1	20
159	Craniofacial Bone Infarcts in Sickle Cell Disease. Journal of Computer Assisted Tomography, 2013, 37, 91-97.	0.9	20
160	The genetics of hemoglobin A ₂ regulation in sickle cell anemia. American Journal of Hematology, 2014, 89, 1019-1023.	4.1	20
161	Genetic polymorphism of APOB is associated with diabetes mellitus in sickle cell disease. Human Genetics, 2015, 134, 895-904.	3.8	20
162	Induced pluripotent stem cell–based mapping of β-globin expression throughout human erythropoietic development. Blood Advances, 2018, 2, 1998-2011.	5.2	20

#	Article	IF	CITATIONS
163	Isolation and characterization of the translation product of a β-globin gene nonsense mutation (β121) Tj ETQq1	1 0.78431 2.5	4 ₁ rgBT /Ov
164	Differential gene expression in pulmonary artery endothelial cells exposed to sickle cell plasma. Physiological Genomics, 2005, 21, 293-298.	2.3	19
165	Genome-wide association study to identify variants associated with acute severe vaso-occlusive pain in sickle cell anemia. Blood, 2017, 130, 686-688.	1.4	19
166	Chronic granulocytic leukemia. American Journal of Medicine, 1973, 55, 93-98.	1.5	18
167	Electrophoresis of Hemoglobin on Polyacrylamide Gels: Precise Method for Measurement of Hemoglobin A2. Clinical Chemistry, 1973, 19, 1082-1084.	3.2	18
168	Hydroxyurea Treatment for Sickle Cell Disease. Scientific World Journal, The, 2002, 2, 1706-1728.	2.1	18
169	Patient predictors of response to treatment of depression in Alzheimer's disease: the DIADS study. International Journal of Geriatric Psychiatry, 2004, 19, 144-150.	2.7	18
170	A Novel Sickle Hemoglobin: Hemoglobin S-South End. Journal of Pediatric Hematology/Oncology, 2004, 26, 773-776.	0.6	18
171	Cerebrovascular events in sickle cellâ€beta thalassemia treated with hydroxyurea: A single center prospective survey in adult Italians. American Journal of Hematology, 2013, 88, E261-4.	4.1	18
172	Quantification of <i><scp>HBG</scp></i> m <scp>RNA</scp> in primary erythroid cultures: prediction of the response to hydroxyurea in sickle cell and betaâ€thalassemia. European Journal of Haematology, 2014, 92, 66-72.	2.2	18
173	Gene-Gene Interactions and the Pathophysiology of Sickle Cell Disease: Modeling the Effects of SNPs on Sickle Cell-Associated Vasoocclusive Events Using Classification and Regression Trees and Stochastic Gradient Boosting Blood, 2005, 106, 3183-3183.	1.4	18
174	Genome-Wide Association Study of Stroke in Sickle Cell Anemia Blood, 2009, 114, 1528-1528.	1.4	18
175	Haemoglobin C/Î \pm Thalassaemia: Haematological and Biosynthetic Studies. British Journal of Haematology, 1975, 30, 337-342.	2.5	17
176	Deferiprone versus Deferoxamine in Sickle Cell Disease: Results from a 5-year long-term Italian multi-center randomized clinical trial. Blood Cells, Molecules, and Diseases, 2014, 53, 265-271.	1.4	17
177	Sickle Cell Disease: Present and Future Treatment. American Journal of the Medical Sciences, 1996, 312, 166-174.	1.1	17
178	β-Globin gene haplotype in Hb SC disease. , 1996, 52, 189-191.		16
179	Learning Bayesian Networks from Correlated Data. Scientific Reports, 2016, 6, 25156.	3.3	16
180	A candidate transacting modulator of fetal hemoglobin gene expression in the Arab—Indian haplotype of sickle cell anemia. American Journal of Hematology, 2016, 91, 1118-1122.	4.1	16

#	Article	IF	CITATIONS
181	Prevalence and Diversity of Haplotypes of Sickle Cell Disease in the Eastern Province of Saudi Arabia. Hemoglobin, 2020, 44, 78-81.	0.8	16
182	Glucose-6-Phosphate Dehydrogenase Deficiency in Sickle-Cell Anemia. Annals of Internal Medicine, 1974, 80, 217.	3.9	16
183	Erythrocyte Calcium Abnormalities and the Clinical Severity of Sickling Disorders. British Journal of Haematology, 1978, 40, 533-539.	2.5	15
184	Eosinophil, Eosinophilic and Eosinophilic Disorders. CRC Critical Reviews in Clinical Laboratory Sciences, 1981, 16, 35-83.	1.0	15
185	Regional and temporal variation in oscillatory blood flow in sickle cell disease. American Journal of Hematology, 1988, 28, 92-94.	4.1	15
186	Sickle cell disease caused by heterozygosity for Hb S and novel LCR deletion: Report of two patients. American Journal of Hematology, 2009, 84, 603-606.	4.1	15
187	Co-inheritance of novel ATRX gene mutation and globin (α & β) gene mutations in transfusion dependent beta-thalassemia patients. Blood Cells, Molecules, and Diseases, 2015, 55, 27-29.	1.4	15
188	Treating sickle cell anemia: A new era dawns. American Journal of Hematology, 2020, 95, 338-342.	4.1	15
189	Interaction Between HBS-β°-Tha lassemia and α-Thalassemia. American Journal of the Medical Sciences, 1984, 288, 195-199.	1.1	14
190	Fetal Hemoglobin in Sickle Cell Anemia: Examination of Phylogenetically Conserved Sequences Within the Locus Control Region but Outside the Cores of Hypersensitive Sites 2 and 3. Blood Cells, Molecules, and Diseases, 1997, 23, 188-200.	1.4	14
191	MODULATION OF FETAL HEMOGLOBIN IN SICKLE CELL ANEMIA. Hemoglobin, 2001, 25, 195-211.	0.8	14
192	Overview of Sickle Cell Anemia Pathophysiology. , 2016, , 49-73.		14
193	Induction of Globin Synthesis in K562 Cells Is Associated with Differential Expression of Transcription Factor Genes. Blood Cells, Molecules, and Diseases, 1999, 25, 156-165.	1.4	13
194	Evidence of Hyposplenism in the Presence of Splenomegaly. Scandinavian Journal of Haematology, 2009, 31, 437-439.	0.0	13
195	Senicapoc trial results support the existence of different subâ€phenotypes of sickle cell disease with possible drugâ€induced phenotypic shifts. British Journal of Haematology, 2011, 155, 636-638.	2.5	13
196	Homozygosity for a haplotype in the <i>HBG2â€OR51B4</i> region is exclusive to Arabâ€Indian haplotype sickle cell anemia. American Journal of Hematology, 2016, 91, E308-11.	4.1	13
197	Thalassemia: Recent insights into molecular mechanisms. American Journal of Hematology, 1982, 12, 81-92.	4.1	12
198	Lacrimal gland enlargement in sickle cell disease. American Journal of Hematology, 2006, 81, 888-889.	4.1	12

#	Article	IF	CITATIONS
199	Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 14: SickleÂCell Trait. Journal of the American College of Cardiology, 2015, 66, 2444-2446.	2.8	12
200	Alpha-thalassemia. American Journal of Hematology, 1977, 2, 317-325.	4.1	11
201	Influence of HbS levels upon the hematological and clinical characteristics of sickle cell trait. American Journal of Hematology, 1986, 22, 51-54.	4.1	11
202	Sickle Cell Anemia and Fetal Hemoglobin. American Journal of the Medical Sciences, 1994, 308, 259-265.	1.1	11
203	Hb Hope [β136(H14)Gly→Asp (GGT→GAT)]: Interactions with Hb S [β6(A3)Glu→Val (GAG→GTG)], Other Varia Hemoglobins and Thalassemia. Hemoglobin, 2004, 28, 277-285.	ant 0.8	11
204	Sickle cell disease due to compound heterozygosity for Hb S and a novel 7.7-kb ?-globin gene deletion. European Journal of Haematology, 2007, 78, 82-85.	2.2	11
205	Severe fetal and neonatal hemolytic anemia due to a 198 kb deletion removing the complete βâ€globin gene cluster. Pediatric Blood and Cancer, 2012, 59, 941-944.	1.5	11
206	A functional promoter polymorphism of the δ-globin gene is a specific marker of the Arab-Indian haplotype. American Journal of Hematology, 2012, 87, 824-826.	4.1	11
207	Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 14: Sickle Cell Trait. Circulation, 2015, 132, e343-5.	1.6	11
208	Variants of ZBTB7A (LRF) and its β-globin gene cluster binding motifs in sickle cell anemia. Blood Cells, Molecules, and Diseases, 2016, 59, 49-51.	1.4	11
209	BCL2L1 is associated with \hat{I}^3 -globin gene expression. Blood Advances, 2019, 3, 2995-3001.	5.2	11
210	Creatinine Clearance in Sickle Cell Anemia Is Modulated by Genes in the TGF-β/BMP Pathway Blood, 2005, 106, 3175-3175.	1.4	11
211	Laboratory Diagnosis of Sickling Hemoglobinopathies. Southern Medical Journal, 1978, 71, 413-416.	0.7	10
212	Screening for sickle cell trait: The veterans administration national sickle cell program. American Journal of Hematology, 1987, 24, 429-432.	4.1	10
213	Hemoglobinopathies mimicking Hb S/β-thalassemia: Hb S/S with α-thalassemia and Hb S/Volga. American Journal of Hematology, 2006, 81, 361-365.	4.1	10
214	Clinical Aspects of \hat{I}^2 Thalassemia and Related Disorders. , 2009, , 357-416.		10
215	Hemoglobin Kenya composed of α―and (^A γβ)â€fusionâ€globin chains, associated with hereditary persistence of fetal hemoglobin. American Journal of Hematology, 2009, 84, 55-58.	4.1	10

Hemoglobins of the Embryo, Fetus, and Adult. , 2009, , 119-136.

#	Article	IF	CITATIONS
217	Genetic determinants of HbF in Saudi Arabian and African Benin haplotype sickle cell anemia. American Journal of Hematology, 2017, 92, E555-E557.	4.1	10
218	Existence of HbF Enhancer Haplotypes atHBS1L-MYBIntergenic Region in Transfusion-Dependent Saudil ² -Thalassemia Patients. BioMed Research International, 2017, 2017, 1-7.	1.9	10
219	Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood, 2019, 133, 2455-2459.	1.4	10
220	Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Research, 2020, 46, 101803.	0.7	10
221	Effects of dexamethasone on fetal hemoglobin synthesis in peripheral blood erythroid burst-forming units. American Journal of Hematology, 1981, 10, 37-45.	4.1	9
222	The Sickle Hemoglobinopathies—Genetic Analyses of Common Phenocopies and New Molecular Approaches to Treatment. American Journal of the Medical Sciences, 1984, 288, 169-174.	1.1	9
223	HB Mississippi [β44(CD3)SeråG]: A New Variant with Anomalous Properties. Hemoglobin, 1987, 11, 435-452.	0.8	9
224	DNA diagnosis for the detection of sickle hemoglobinopathies. American Journal of Hematology, 1993, 43, 110-115.	4.1	9
225	Sickle Cell Disease: Present and Future Treatment. American Journal of the Medical Sciences, 1996, 312, 166-174.	1.1	9
226	Screening and counseling for thalassemia. Blood, 2006, 107, 1735-1737.	1.4	9
227	Two New α-Thalassemia Frameshift Mutations. Hemoglobin, 2007, 31, 135-139.	0.8	9
228	Mechanisms and Clinical Complications of Hemolysis in Sickle Cell Disease and Thalassemia. , 2009, , 201-224.		9
229	Effect of sodium butyrate on lung vascular TNFSF15 (TL1A) expression: Differential expression patterns in pulmonary artery and microvascular endothelial cells. Cytokine, 2009, 46, 72-78.	3.2	9
230	qMRI relaxometry of mandibular bone marrow: A monomodal distribution in sickle cell disease. Journal of Magnetic Resonance Imaging, 2013, 37, 1182-1188.	3.4	9
231	More Blood for Sickle Cell Anemia?. New England Journal of Medicine, 2014, 371, 775-776.	27.0	9
232	Genetic modulation of fetal hemoglobin in hydroxyureaâ€ŧreated sickle cell anemia. American Journal of Hematology, 2017, 92, E70-E72.	4.1	9
233	β-Thalassemia Intermedia with Exceptionally High Hemoglobin A2: Relationship to Mutations in the β-Gene Promoter. American Journal of the Medical Sciences, 1992, 304, 73-78.	1.1	8
234	Genetic studies of fetal hemoglobin in the Arabâ€Indian haplotype sickle cellâ€Î² ⁰ thalassemia. American Journal of Hematology, 2013, 88, 531-532.	4.1	8

#	Article	IF	CITATIONS
235	Quantitative Magnetic Resonance Imaging Analysis of the Lacrimal Gland in Sickle Cell Disease. Journal of Computer Assisted Tomography, 2014, 38, 674-680.	0.9	8
236	New Views of Sickle Cell Disease Pathophysiology and Treatment. Hematology American Society of Hematology Education Program, 2000, 2000, 2-17.	2.5	8
237	Association of Genetic Polymorphisms in the TGF-β Pathway with the Acute Chest Syndrome of Sickle Cell Anemia Blood, 2007, 110, 2247-2247.	1.4	8
238	Selenite (Se75) as a tumor-scanning agent. Journal of Surgical Oncology, 1971, 3, 617-624.	1.7	7
239	Case Report: Effects of Iron Deficiency and the-88C→T Mutation on HbA2 Levels in β-thalassemia. American Journal of the Medical Sciences, 1993, 305, 312-313.	1.1	7
240	Effects of hydroxyurea on F ells in sickle cell disease and potential impact of a second fetal globin inducer. American Journal of Hematology, 2017, 92, E10-E11.	4.1	7
241	Sickle cell disease in the era of precision medicine: looking to the future. Expert Review of Precision Medicine and Drug Development, 2019, 4, 357-367.	0.7	7
242	Haptoglobin genotype predicts severe acute vasoâ€occlusive pain episodes in children with sickle cell anemia. American Journal of Hematology, 2020, 95, E92-E95.	4.1	7
243	Oral Arginine Increases Erythrocyte Glutathione Levels in Sickle Cell Disease: Implications for Pulmonary Hypertension Blood, 2006, 108, 1208-1208.	1.4	7
244	Acute chest syndrome of sickle cell disease: genetics, risk factors, prognosis, and management. Expert Review of Hematology, 2022, 15, 117-125.	2.2	7
245	Targeting fetal hemoglobin expression to treat Î ² hemoglobinopathies. Expert Opinion on Therapeutic Targets, 2022, 26, 347-359.	3.4	7
246	α THALASSEMIA. , 0, , 239-240.		6
247	Unbalanced Globin Chain Synthesis in Erythroid Precursor Cells of Heterozygous αThalassaemia. British Journal of Haematology, 1976, 34, 55-60.	2.5	6
248	Review: Thalassemia: Molecular Pathology and Management. American Journal of the Medical Sciences, 1988, 296, 308-321.	1.1	6
249	Pneumococcus and Sickle Cell Disease: The Beginning of the End?. Clinical Infectious Diseases, 2007, 44, 1434-1435.	5.8	6
250	Induction of Fetal Hemoglobin in the Treatment of Sickle Cell Disease and \hat{I}^2 Thalassemia. , 0, , 745-754.		6
251	Nitric oxide-based treatment for sickle cell leg ulcers?. Lancet Haematology,the, 2014, 1, e86-e87.	4.6	6
252	Bayesian Polynomial Regression Models to Fit Multiple Genetic Models for Quantitative Traits. Bayesian Analysis, 2015, 10, 53-74.	3.0	6

#	Article	IF	CITATIONS
253	Sickle cell disease in the Eastern Province of Saudi Arabia: Clinical and laboratory features. American Journal of Hematology, 2021, 96, E117-E121.	4.1	6
254	Genetic Polymorphisms Associated with Fetal Hemoglobin Response to Hydroxyurea in Patients with Sickle Cell Anemia Blood, 2004, 104, 108-108.	1.4	6
255	A Repertoire of Genes Modifying the Risk of Death in Sickle Cell Anemia Blood, 2007, 110, 150-150.	1.4	6
256	Clinical and Genetic Variability of Red Blood Cell Hemolysis in Sickle Cell Anemia. Blood, 2011, 118, 1077-1077.	1.4	6
257	Regulators of Erythrocyte Volume as Modifiers in Sickle Cell Disease: The Gardos Channel Blood, 2007, 110, 3387-3387.	1.4	6
258	Therapies to increase fetal hemoglobin in sickle cell disease. Psychophysiology, 2003, 2, 95-101.	1.1	6
259	SICKLE CELL ANAEMIA IN A SEPTUAGENARIAN. British Journal of Haematology, 1989, 71, 297-298.	2.5	5
260	Patients with thalassemia in the United States. Blood, 2005, 105, 4896-4897.	1.4	5
261	SNPing away at sickle cell pathophysiology. Blood, 2008, 111, 5420-5421.	1.4	5
262	Sickle Cell Pain: Biology, Etiology, and Treatment. , 0, , 497-524.		5
263	Hemoglobin SE Disease in Maine, and Severe Thalassemia in New Hampshire. Journal of Pediatric Hematology/Oncology, 2009, 31, 307.	0.6	5
264	Genetic modulation of HbF in Brazilians with HbSC disease and sickle cell anemia. American Journal of Hematology, 2013, 88, 923-924.	4.1	5
265	Hereditary Persistence of Fetal Hemoglobin Caused by Single Nucleotide Promoter Mutations in Sickle Cell Trait and Hb SC Disease. Hemoglobin, 2016, 40, 64-65.	0.8	5
266	HbA 2 induction: the merit of pancellularity in sickle cell disease. British Journal of Haematology, 2021, 193, 1032-1033.	2.5	5
267	A GCH1 Haplotype Associated with Susceptibility to Vasoocclusive Pain and Impaired Vascular Function in Sickle Cell Anemia Blood, 2009, 114, 575-575.	1.4	5
268	Hemoglobin SC Disease and Hemoglobin C Disorders. , 0, , 525-548.		4
269	Glucose-6-Phosphate Dehydrogenase Jackson. Acta Haematologica, 1974, 51, 310-314.	1.4	4
270	Gene Expression Profiling during Erythroid Differentiation of K562 Cells. Blood Cells, Molecules, and Diseases, 2001, 27, 309-319.	1.4	4

#	Article	IF	CITATIONS
271	Genetic Modulation of Sickle Cell Disease and Thalassemia. , 2009, , 638-657.		4
272	Other Sickle Hemoglobinopathies. , 0, , 564-586.		4
273	Sickle Cell Disease and Other Hemoglobinopathies. , 2012, , 1066-1075.		4
274	The genetic basis of asymptomatic codon 8 frameâ€ s hift (<i><scp>HBB</scp></i> :c25_26del <scp>AA</scp>) β ⁰ â€ŧhalassaemia homozygotes. British Journal of Haematology, 2016, 172, 958-965.	2.5	4
275	The Hyperhemolysis Phenotype in Sickle Cell Anemia: Increased Risk of Leg Ulcers, Priapism, Pulmonary Hypertension and Death with Decreased Risk of Vasoocclusive Events Blood, 2006, 108, 787-787.	1.4	4
276	Pharmacologic induction of PGC â€lα stimulates fetal haemoglobin gene expression. British Journal of Haematology, 2022, , .	2.5	4
277	Fetal-like Hemoglobin in Sickle Cell Anemia. New England Journal of Medicine, 2022, 386, 689-691.	27.0	4
278	Molecular and Cellular Basis of Hemoglobin Switching. , 0, , 86-100.		3
279	The Erythrocyte Membrane. , 2009, , 158-184.		3
280	Nuclear Factors That Regulate Erythropoiesis. , 2009, , 62-85.		3
281	Globin Biosynthesis in Erythroid Bursts of Heterozygous α or β Thalassaemia. British Journal of Haematology, 1981, 47, 57-65.	2.5	3
282	Developing treatment for sickle cell disease. Expert Opinion on Investigational Drugs, 2002, 11, 645-659.	4.1	3
283	Clinical and Pathophysiological Aspects of Sickle Cell Anemia. , 2009, , 437-496.		3
284	HbC disorders. Blood, 2013, 122, 3698-3698.	1.4	3
285	Isn't Your Staff Trained To Manage My Mother?. American Journal of Psychiatry, 2016, 173, 205-207.	7.2	3
286	Primary polymerization prevention. Blood, 2019, 133, 1797-1798.	1.4	3
287	Haemolysis in sickle cell anaemia: effects of polymorphisms in αâ€globin gene regulatory elements. British Journal of Haematology, 2019, 186, 363-364.	2.5	3
288	New Views of Sickle Cell Disease Pathophysiology and Treatment. Hematology American Society of Hematology Education Program, 2000, 2000, 2-17.	2.5	3

#	Article	IF	CITATIONS
289	Genes Associated with Alloimmunization to Blood Group Antigens in Sickle Cell Disease. Blood, 2014, 124, 762-762.	1.4	3
290	Fetal hemoglobin modulates neurocognitive performance in sickle cell anemia✺,✺✺. Current Research in Translational Medicine, 2022, 70, 103335.	1.8	3
291	Multifocal Eosinophilic Granuloma. Southern Medical Journal, 1979, 72, 884-885.	0.7	2
292	Diamond-blackfan anemia: The role of immunoglobulin blocking factor in remission. American Journal of Hematology, 1980, 8, 213-219.	4.1	2
293	Effect of Lead and Ethanol upon γ-Globin Synthesis in Sickle Reticulocytes. American Journal of the Medical Sciences, 1986, 292, 299-305.	1.1	2
294	Sickle cell anemia: Pathophysiology, management, and prospects for the future. Journal of Clinical Apheresis, 1991, 6, 221-223.	1.3	2
295	Sickle cell disease and hydroxyurea: the good, the bad, and the future. Blood, 2005, 105, 441-441.	1.4	2
296	Pharmacological Treatment of Neuropsychiatric Symptoms of Dementia. JAMA - Journal of the American Medical Association, 2005, 293, 2211.	7.4	2
297	Hemoglobinopathies in pregnancy. , 0, , 442-468.		2
298	Response: genetic admixture in sickle cell disease. Blood, 2011, 118, 4495-4495.	1.4	2
299	Go with the Flow. New England Journal of Medicine, 2017, 376, 485-487.	27.0	2
300	Exome sequencing in high and low fetal haemoglobin Arab–Indian haplotype sickle cell disease. British Journal of Haematology, 2021, 194, e61-e64.	2.5	2
301	Characteristics and outcomes of dementia residents in an assisted living facility. International Journal of Geriatric Psychiatry, 2000, 15, 586-593.	2.7	2
302	Genome-Wide Studies in Sickle Cell Anemia Show Associations Between SNPs in the Olfactory Receptor Gene Cluster and Fetal Hemoglobin Concentration Blood, 2009, 114, 821-821.	1.4	2
303	Association of Single Nucleotide Polymorphisms in Klotho with Priapism in Sickle Cell Anemia Blood, 2004, 104, 1673-1673.	1.4	2
304	Predicting Acute Chest Syndrome in Sickle Cell Disease Patients Hospitalized for Acute Vasoocclusive Events Blood, 2007, 110, 3390-3390.	1.4	2
305	Characterization of HbF Decline In Compound Heterozygotes for HbS and Deletional Hereditary Persistence of Fetal Hemoglobin. Blood, 2010, 116, 1626-1626.	1.4	2
306	Identification Of Protein and Post Translational Modification Markers Of Pulmonary Vasculopathy In Sickle Cell Disease. Blood, 2013, 122, 2233-2233.	1.4	2

#	Article	IF	CITATIONS
307	Fetal hemoglobin in β hemoglobinopathies: Is enough too much?. American Journal of Hematology, 2022, 97, 676-678.	4.1	2
308	The Molecular Basis of \hat{I} ± Thalassemia. , 2009, , 241-265.		1
309	Rheology and Vascular Pathobiology in Sickle Cell Disease and Thalassemia. , 2009, , 139-157.		1
310	The ultrastructure of developing bone marrow implants: A scanning electron microscope study. Cells Tissues Organs, 1973, 84, 1-9.	2.3	1
311	Hemoglobin F levels do not change during the painful crisis of sickle cell anemia. American Journal of Obstetrics and Gynecology, 1977, 129, 712-713.	1.3	1
312	Prospects of Gene Therapy for Hemoglobinopathies. American Journal of the Medical Sciences, 1991, 302, 298-303.	1.1	1
313	THALASSEMIA INTERMEDIA AND EXTRAMEDULLARY HEMATOPOIESIS ASSOCIATED WITH COMPOUND HETEROZYGOSITY FOR THE 532 BP DELETION OF THE Î2-GLOBIN GENE AND GENE DELETION HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN. Hemoglobin, 2001, 25, 91-96.	0.8	1
314	Reply: Practice Guideline for Pulmonary Hypertension in Sickle Cell: Direct Evidence Needed before Universal Adoption. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 238-240.	5.6	1
315	Evaluation of an ensemble of genetic models for prediction of a quantitative trait. Frontiers in Genetics, 2015, 5, 474.	2.3	1
316	"Sickling―in vertebrates: Animal studies vs. sickle cell disease. Blood Reviews, 2019, 36, 88-94.	5.7	1
317	Recapitulating Hematopoietic Development in aÂDish. Current Human Cell Research and Applications, 2019, , 45-71.	0.1	1
318	Update on Pharmacological Treatment of Neuropsychiatric Symptoms of Dementia. Current Geriatrics Reports, 2021, 10, 51.	1.1	1
319	Fetal Hemoglobin in Sickle Cell Anemia: A Genome-Wide Association Study of the Response to Hydroxyurea. Blood, 2008, 112, 2471-2471.	1.4	1
320	Co-Inheritance of Delta Thalassemia Might Contribute to the High Fetal Hemoglobin in Sickle Cell Anemia Patients with the Saudi-Indian Haplotype. Blood, 2011, 118, 1056-1056.	1.4	1
321	Neonatal Hemolytic Anemia and (Îβ)0-Thalassemia Caused By Novel Deletions Involving The β-Globin Gene Cluster. Blood, 2013, 122, 3452-3452.	1.4	1
322	Leg Ulcers in Sickle Cell Anemia Are Associated with Laboratory Markers of Hemolysis and SNPs in KL and Genes of the TGF-β/BMP Pathway Blood, 2005, 106, 2317-2317.	1.4	1
323	Long-Term Vitamin D Supplementation Improves Bone Mineral Density (BMD) in Patients with Sickle Cell Disease Blood, 2006, 108, 3800-3800.	1.4	1
324	Erythrocyte Glutathione Depletion Is Associated with Severity of Anemia and Pulmonary Hypertension in Patients with Sickle Cell Disease Blood, 2006, 108, 788-788.	1.4	1

#	Article	IF	CITATIONS
325	Fetal Hemoglobin in Sickle Cell Anemia: Associations with Single Nucleotide Polymorphisms in Quantitative Trait Loci on Chromsomes 8q12 and Xp22 Blood, 2006, 108, 1222-1222.	1.4	1
326	Variability In Hb A2 levels among Individuals with Beta-Thalassemia Trait: Is Iron Deficiency Associated with Abnormally Low Hb A2?. Blood, 2010, 116, 4281-4281.	1.4	1
327	A 3-Bp Deletion Between Transcription Factor Binding Motifs In the HBS1L-MYB Intergenic Region on Chromosome 6q23 Is Associated with HbF Expression. Blood, 2010, 116, 1013-1013.	1.4	1
328	The Aryl Hydrocarbon Receptor (AhR) Regulates the Production of Bipotential Hematopoietic Progenitor Cells. Blood, 2012, 120, 766-766.	1.4	1
329	The Evolutionary Impact Of Malaria On The Saudi Arabian Genome. Blood, 2013, 122, 1001-1001.	1.4	1
330	Induced Pluripotent Stem Cell (iPSC)-Based Mapping of Globin Expression throughout Human Erythropoietic Development. Blood, 2017, 130, 946-946.	1.4	1
331	Animal Models of Hemoglobinopathies and Thalassemia. , 0, , 225-238.		0
332	Novel Approaches to Treatment. , 2009, , 755-773.		0
333	Leukocyte Alkaline Phosphatase. Annals of Internal Medicine, 1974, 81, 274.	3.9	0
334	Expression of two G-6-PD genes in an XX phenotypic male. British Journal of Haematology, 1986, 64, 107-110.	2.5	0
335	Novel approaches to treatment of sickle cell anaemia. Expert Opinion on Investigational Drugs, 1999, 8, 1823-1836.	4.1	0
336	THE Î ² THALASSEMIAS. , 2009, , 321-322.		0
337	THE MOLECULAR, CELLULAR, AND GENETIC BASIS OF HEMOGLOBIN DISORDERS. , 2009, , 1-2.		0
338	Sickle Cell Trait. , 2009, , 549-563.		0
339	SPECIAL TOPICS IN HEMOGLOBINOPATHIES. , 2009, , 623-624.		0
340	NEW APPROACHES TO THE TREATMENT OF HEMOGLOBINOPATHIES AND THALASSEMIA. , 2009, , 687-688.		0
341	Sickle Cell Disease and Stroke. , 2016, , 439-467.		0
342	A Mild Phenotype of Severe β+ Thalassemia in a 16-Month-Old Boy. Journal of Pediatric Hematology/Oncology, 2018, 40, e145-e147.	0.6	0

#	Article	IF	CITATIONS
343	A variant Sp1 (R218Q) transcription factor might enhance HbF expression in β ⁰ â€ŧhalassaemia homozygotes. British Journal of Haematology, 2018, 180, 755-757.	2.5	0
344	Airlie House legend. American Journal of Hematology, 2018, 93, 1566-1567.	4.1	0
345	Strategies to improve pharmacogenomic-guided treatment options for patients with β-hemoglobinopathies. Expert Review of Hematology, 2021, 14, 1-3.	2.2	Ο
346	Southern Society for Clinical Investigation Founders Medal Recipient???s Address. American Journal of the Medical Sciences, 2000, 320, 161-162.	1.1	0
347	A Sickle Transgenic Mouse Model of Acute Chest Syndrome Blood, 2004, 104, 3585-3585.	1.4	Ο
348	Single Nucleotide Polymorphisms (SNPs) in Human Homologs of Genes Up-Regulated in the Kidney of S+Sâ^' Antilles Transgenic Mice Blood, 2004, 104, 3584-3584.	1.4	0
349	Multigenic Dissection and Prognostic Modeling of Overt Stroke in Sickle Cell Anemia Blood, 2004, 104, 1655-1655.	1.4	0
350	Polymorphisms (Snps) in Multiple Genes of the Tgf-ß/Bmp Pathway Are Associated with a Global Measure of Sickle Cell Disease Severity Blood, 2005, 106, 74-74.	1.4	0
351	Association of Polymorphisms of the Transforming Growth Factor-β/Bone Morphogenetic Protein (TGF-β/BMP) Pathway with Sickle Cell Bacteremia Blood, 2005, 106, 3170-3170.	1.4	0
352	Fetal Hemoglobin (HbF) in Sickle Cell Anemia: Genome-Wide Association Studies Using Pooled DNA Samples Can Reveal Genetic Associations with HbF Concentration Blood, 2006, 108, 1221-1221.	1.4	0
353	Identification of Oxidative Post-Translational Modifications on Plasma Albumin in Patients with Pulmonary Hypertension of Sickle Cell Anemia Blood, 2006, 108, 1215-1215.	1.4	0
354	Severity of Sickle Cell Disease: Modeling Interrelationships among Hemolysis, Pulmonary Hypertension and Risk of Death Blood, 2006, 108, 786-786.	1.4	0
355	Low Erythrocyte Glutamine-to-Glutamate Ratio: A Novel Biomarker of Hemolysis and Pulmonary Hypertension in Sickle Cell Disease Blood, 2007, 110, 2257-2257.	1.4	0
356	Association of Wind Speed and the Occurrence of Sickle Cell Acute Painful Episodes: Results of a Case-Crossover Study Blood, 2007, 110, 3402-3402.	1.4	0
357	Alterations In HLA-DR Expression In Peripheral Blood Mononuclear Cells Are Associated with An Elevated Tricuspid Regurgitant Jet Velocity and Pulmonary Hypertension of Sickle Cell Disease. Blood, 2010, 116, 2640-2640.	1.4	0
358	Severe Fetal and Neonatal Anemia Due to Heterozygosity for a 198 Kb Deletion Removing the Entire β-Globin Gene Cluster. Blood, 2010, 116, 5171-5171.	1.4	0
359	Tumor Necrosis Factor-α Signaling In Sickle Cell Disease: Elevated Biomarker Levels and Genetic Associations with Disease Severity. Blood, 2010, 116, 2654-2654.	1.4	0
360	Fetal Hemoglobin In Sickle Cell Anemia: Molecular Characterization of Saudi Patients From the Eastern Province. Blood, 2010, 116, 1627-1627.	1.4	0

#	Article	IF	CITATIONS
361	Fetal Hemoglobin In Sickle Cell Anemia: Molecular Characterization of the High Fetal Hemoglobin Phenotype In African American Patients. Blood, 2010, 116, 2068-2068.	1.4	0
362	An Elevated Tricuspid Regurgitant Jet Velocity in Sickle Cell Disease Is Associated with Polymorphisms in Genes Impacting Innate Immunity. Blood, 2011, 118, 514-514.	1.4	0
363	Severe Impairment of γ-Globin Gene Silencing in an Asymptomatic Adult Patient Homozygous for the Codon 8 (–AA) Frame-Shift β0-Thalassemia Mutation. Blood, 2012, 120, 1022-1022.	1.4	0
364	Prediction of Fetal Hemoglobin in Sickle Cell Anemia Using a Genetic Risk Score. Blood, 2012, 120, 3216-3216.	1.4	0
365	Induced Pluripotent Stem Cell Modeling of Sickle Cell Anemia. Blood, 2012, 120, 3233-3233.	1.4	0
366	Genetic Determinants of Hemolysis in Sickle Cell Anemia Blood, 2012, 120, 2104-2104.	1.4	0
367	Fetal Hemoglobin In Sickle Cell Anemia: A Glass Half Full?. Blood, 2013, 122, 4691-4691.	1.4	0
368	Genetic Association Of a MAPK8 Expression Quantitative Trait Locus With Pre-Capillary Pulmonary Hypertension In Sickle Cell Disease. Blood, 2013, 122, 991-991.	1.4	0
369	Patients Homozygous For Codon 8 (–AA) Frame-Shift β0-Thalassemia Mutation With Markedly Increased HbF. Blood, 2013, 122, 3455-3455.	1.4	0
370	Sickle Cell Disease and Stroke. , 2014, , 1-35.		0
371	BCL11A enhancer Haplotypes Are Associated with the Distribution of HbF in Arab-Indian and African Haplotype Sickle Cell Anemia but Not the Different Population Levels of HbF. Blood, 2014, 124, 4066-4066.	1.4	0
372	A Library of Sickle Cell Anemia Induced Pluripotent Stem Cells of Diverse Haplotypes and Ethnicities. Blood, 2015, 126, 2354-2354.	1.4	0
373	Association of FOXO3A Polymorphisms with Hematocrit, LDH and Longevity in Patients with Sickle Cell Anemia from CSSCD, Walk-Phasst, and PUSH Clinical Trials. Blood, 2015, 126, 2176-2176.	1.4	0
374	Polymorphisms Associated with the Arab-Indian Haplotype of Sickle Cell Anemia Are Candidate Fetal Hemoglobin Gene Modulators. Blood, 2015, 126, 3388-3388.	1.4	0
375	A Candidate Trans-Acting Modulator of Fetal Hemoglobin Gene Expression in the Arab-Indian Haplotype of Sickle Cell Anemia. Blood, 2015, 126, 409-409.	1.4	0
376	In Vivo Effects of LSD1 Inhibition By Small Chemical Inhibitors in Sickle Cell Mice. Blood, 2017, 130, 968-968.	1.4	0
377	Sickle cell anemia: HBB haplotypes; clinical heterogeneity; iPSC modeling. , 2020, , 29-45.		Ο