
Jeong-Hun Sohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1821181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Dehydrosulfurative Carbon–Oxygen Cross-Coupling of 3,4-Dihydropyrimidine-2-thiones with Aryl Alcohols. Journal of Organic Chemistry, 2021, 86, 5423-5430.	3.2	6
2	Pd ₃ Pb Nanosponges for Selective Conversion of Furfural to Furfuryl Alcohol under Mild Condition. Small Methods, 2021, 5, e2100400.	8.6	8
3	Aerobic copper-promoted oxidative dehydrosulfurative carbon–oxygen cross-coupling of 3,4-dihydropyrimidine-1H-2-thiones with alcohols. RSC Advances, 2021, 11, 36821-36825.	3.6	1
4	Oxidative Dehydrosulfurative Azolation of 3, <scp>4â€Dihydropyrimidinâ€1<i>H</i></scp> â€2â€thiones. Bulletin of the Korean Chemical Society, 2020, 41, 881-883.	1.9	2
5	Oxidative Dehydrosulfurative Cross-Coupling of 3,4-Dihydropyrimidine-2-thiones with Alkynes for Access to 2-Alkynylpyrimidines. Journal of Organic Chemistry, 2020, 85, 5087-5096.	3.2	6
6	Selective reductive cleavage of 2-(phenylthio)pyrimidines for efficient synthesis of 2-(H)pyrimidines. Tetrahedron Letters, 2019, 60, 2074-2077.	1.4	1
7	Boric Ester and Thiourea as Coupling Partners in a Copper-Mediated Oxidative Dehydrosulfurative Carbon–Oxygen Cross-Coupling Reaction. Organic Letters, 2018, 20, 1961-1965.	4.6	14
8	Decarboxylative cross-couplings of 2-aminopyrimidine-5-carboxylic acids. Tetrahedron, 2018, 74, 3843-3851.	1.9	3
9	Dehydrosulfurative arylation with concomitant oxidative dehydrogenation for rapid access to pyrimidine derivatives. Tetrahedron, 2017, 73, 6604-6613.	1.9	11
10	Synthesis of Arylthiopyrimidines by Copperâ€catalyzed Aerobic Oxidative C–S Crossâ€coupling. Bulletin of the Korean Chemical Society, 2016, 37, 242-245.	1.9	7
11	Dehydrosulfurative C–N Cross-Coupling and Concomitant Oxidative Dehydrogenation for One-Step Synthesis of 2-Aryl(alkyl)aminopyrimidines from 3,4-Dihydropyrimidin-1 <i>H</i> -2-thiones. Organic Letters, 2016, 18, 5154-5157.	4.6	20
12	Preference of Ruthenium-Based Metathesis Catalysts toward <i>Z</i> - and <i>E</i> -Alkenes as a Guide for Selective Reactions to Alkene Stereoisomers. Journal of Organic Chemistry, 2016, 81, 7591-7596.	3.2	12
13	Highly β-Selective Cyclopolymerization of 1,6-Heptadiynes and Ring-Closing Enyne Metathesis Reaction Using Grubbs <i>Z</i> -Selective Catalyst: Unprecedented Regioselectivity for Ru-Based Catalysts. Journal of the American Chemical Society, 2016, 138, 11227-11233.	13.7	35
14	Facet-controlled {100}Rh–Pt and {100}Pt–Pt dendritic nanostructures by transferring the {100} facet nature of the core nanocube to the branch nanocubes. Nanoscale, 2015, 7, 3941-3946.	5.6	18
15	Morphological evolution of 2D Rh nanoplates to 3D Rh concave nanotents, hierarchically stacked nanoframes, and hierarchical dendrites. Nanoscale, 2015, 7, 3460-3465.	5.6	22
16	Unusual Rh nanocrystal morphology control by hetero-epitaxially growing Rh on Au@Pt nanowires with numerous vertical twinning boundaries. Nanoscale, 2015, 7, 8309-8314.	5.6	12
17	Copper-catalyzed aerobic cascade reaction for the conversion ofÂ3,4-dihydropyrimidine-2(1H)-thiones to arylthiopyrimidines. Tetrahedron, 2015, 71, 2936-2944.	1.9	15
18	Rationally synthesized five-fold twinned core–shell Pt ₃ Ni@Rh nanopentagons, nanostars and nanopaddlewheels for selective reduction of a phenyl ring of phthalimide. Nanoscale, 2014, 6, 11007-11012.	5.6	18

JEONG-HUN SOHN

#	Article	IF	CITATIONS
19	Copper-catalyzed aerobic oxidative dehydrogenation for conversion of 2-(alkylthio)-1,4-dihydropyrimidines to 2-(alkylthio)pyrimidines. Tetrahedron, 2014, 70, 7929-7935.	1.9	13
20	Silicon-Tethered Intramolecular [5+2] Oxidopyrylium-Based Cycloaddition and Reductive Cleavage of Ether Bridge: Synthetic Studies Toward Arteminolides. Bulletin of the Korean Chemical Society, 2014, 35, 23-24.	1.9	8
21	Correlation between Functionality Preference of Ru Carbenes and <i>exo</i> / <i>endo</i> Product Selectivity for Clarifying the Mechanism of Ring-Closing Enyne Metathesis. Journal of Organic Chemistry, 2013, 78, 8242-8249.	3.2	17
22	Fabrication of hierarchical Rh nanostructures by understanding the growth kinetics of facet-controlled Rh nanocrystals. Chemical Communications, 2013, 49, 2225.	4.1	29
23	Discovery of 3,4-dihydropyrimidin-2(1H)-ones with inhibitory activity against HIV-1 replication. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2119-2124.	2.2	32
24	Synthetic Studies on Arglabin Diene; An Alleged Precursor to Arteminolides. Bulletin of the Korean Chemical Society, 2012, 33, 289-292.	1.9	2
25	A Nonpeptidic Reverse-Turn Scaffold Stabilized by Urea-Based Dual Intramolecular Hydrogen Bonding. Organic Letters, 2011, 13, 3486-3489.	4.6	12
26	Reproductive Regulating Pheromones of Queen Ant: A Short and Versatile Synthesis of 3,11-Dimethylheptacosane. Bulletin of the Korean Chemical Society, 2011, 32, 3213-3214.	1.9	4
27	A facile method for the rapid and selective deprotection of methoxymethyl (MOM) ethers. Tetrahedron, 2010, 66, 1673-1677.	1.9	63
28	Antileishmanial High-Throughput Drug Screening Reveals Drug Candidates with New Scaffolds. PLoS Neglected Tropical Diseases, 2010, 4, e675.	3.0	123
29	Quantitative Catalystâ^'Substrate Association Relationships between Metathesis Molybdenum or Ruthenium Carbene Complexes and Their Substrates. Journal of the American Chemical Society, 2010, 132, 12027-12033.	13.7	25
30	Studies toward Synthesis of Arteminolides: Intramolecular [5+2] Oxidopyrylium Ion Cycloaddition Reactions with Silicon Tether. Bulletin of the Korean Chemical Society, 2010, 31, 1841-1842.	1.9	6
31	Probing the Mode of Asymmetric Induction of Biginelli Reaction Using Proline Ester Salts. European Journal of Organic Chemistry, 2009, 2009, 3858-3862.	2.4	31
32	Initial Catalystâ^'Substrate Association Step in Enyne Metathesis Catalyzed by Grubbs Ruthenium Complex Probed by Time-Dependent Fluorescence Quenching. Journal of the American Chemical Society, 2008, 130, 16506-16507.	13.7	26
33	Studies toward the Asymmetric Synthesis of the Right Part of the Mycalamides. Journal of Organic Chemistry, 2007, 72, 386-397.	3.2	13
34	Synthesis of C-15 Vindoline Analogues by Palladium-Catalyzed Cross-Coupling Reactions. Journal of Organic Chemistry, 2006, 71, 7899-7902.	3.2	33
35	Total Synthesis of Mycalamide A. Journal of the American Chemical Society, 2005, 127, 7290-7291.	13.7	91
36	Development of tripeptidyl farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1599-1602.	2.2	8

#	Article	IF	CITATIONS
37	Studies toward the synthesis of arteminolide: [5+2] cycloaddition reaction of allenes with oxidopyrylium ions. Tetrahedron Letters, 2001, 42, 1695-1698.	1.4	27