Thomas Pons

List of Publications by Citations

Source: https://exaly.com/author-pdf/1821006/thomas-pons-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,871 82 87 40 h-index g-index citations papers 8.8 7,446 107 5.53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
87	Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. <i>ACS Nano</i> , 2010 , 4, 2531-8	16.7	449
86	On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. <i>Nano Letters</i> , 2007 , 7, 3157-64	11.5	443
85	Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. <i>Chemical Reviews</i> , 2017 , 117, 536-7	19 ^{8.1}	439
84	Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13987-96	16.4	439
83	Biosensing with Luminescent Semiconductor Quantum Dots. <i>Sensors</i> , 2006 , 6, 925-953	3.8	332
82	Effects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 3024-37	2.8	311
81	Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20308-16	3.4	259
8o	Solution-phase single quantum dot fluorescence resonance energy transfer. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15324-31	16.4	240
79	Enhanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine. <i>Organic Letters</i> , 2004 , 6, 47-50	6.2	231
78	Kinetics of Metal-Affinity Driven Self-Assembly between Proteins or Peptides and CdSellnS Quantum Dots. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11528-11538	3.8	221
77	Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. <i>Bioconjugate Chemistry</i> , 2006 , 17, 920-7	6.3	219
76	Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4556-7	16.4	206
75	A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. <i>Nano Letters</i> , 2007 , 7, 1741-8	11.5	172
74	Synthesis and Characterization of Near-Infrared CulhBe/ZnS Core/Shell Quantum Dots for In vivo Imaging. <i>Chemistry of Materials</i> , 2010 , 22, 6117-6124	9.6	152
73	Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. <i>Bioconjugate Chemistry</i> , 2008 , 19, 1785-95	6.3	141
72	Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. <i>Nature Protocols</i> , 2007 , 2, 2383-90	18.8	139
71	Design of new quantum dot materials for deep tissue infrared imaging. <i>Advanced Drug Delivery Reviews</i> , 2013 , 65, 719-31	18.5	125

(2013-2007)

70	Two-Photon Excitation of Quantum-Dot-Based Fluorescence Resonance Energy Transfer and Its Applications. <i>Advanced Materials</i> , 2007 , 19, 1921-1926	24	112	
69	Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. <i>Bioconjugate Chemistry</i> , 2008 , 19, 1921-6	6.3	104	
68	Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16745-56	16.4	103	
67	Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18552-18561	3.8	101	
66	Synthesis and two-photon absorption of highly soluble three-branched fluorenylene-vinylene derivatives. <i>Tetrahedron Letters</i> , 2003 , 44, 8121-8125	2	99	
65	PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to One- and Two-Photon Cellular Imaging. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 453-466	3.1	95	
64	Strong modulation of two-photon excited fluorescence of quadripolar dyes by (de)protonation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 16294-5	16.4	95	
63	Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano, 2012, 6, 6741-50	16.7	93	
62	Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging. <i>Langmuir</i> , 2012 , 28, 15177-84	4	88	
61	Synthesis of Near-Infrared-Emitting, Water-Soluble CdTeSe/CdZnS Core/Shell Quantum Dots. <i>Chemistry of Materials</i> , 2009 , 21, 1418-1424	9.6	77	
60	Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10683-90	3.4	70	
59	Mechanisms of membrane potential sensing with second-harmonic generation microscopy. <i>Journal of Biomedical Optics</i> , 2003 , 8, 428-31	3.5	63	
58	Investigating biological processes at the single molecule level using luminescent quantum dots. <i>Annals of Biomedical Engineering</i> , 2009 , 37, 1934-59	4.7	56	
57	Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies. <i>Physical Review B</i> , 2006 , 73,	3.3	56	
56	Raman- and IR-Active Phonons in CdSe/CdS Core/Shell Nanocrystals in the Presence of Interface Alloying and Strain. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18225-18233	3.8	55	
55	Electro-optic response of second-harmonic generation membrane potential sensors. <i>Optics Letters</i> , 2003 , 28, 625-7	3	55	
54	Quantum dots-DNA bioconjugates: synthesis to applications. <i>Interface Focus</i> , 2016 , 6, 20160064	3.9	54	
53	Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays. <i>ACS Applied Materials & Discounty (Materials & Discounty)</i> , 1, 288	31292	53	

52	Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation?. <i>Biomaterials</i> , 2019 , 219, 119357	15.6	50
51	Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application. <i>Nanoscale</i> , 2014 , 6, 9264-72	7.7	50
50	Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. <i>Journal of Natural Products</i> , 2007 , 70, 1718-24	4.9	46
49	Sulfobetaine-Vinylimidazole Block Copolymers: A Robust Quantum Dot Surface Chemistry Expanding Bioimaging Horizons. <i>ACS Nano</i> , 2015 , 9, 11479-89	16.7	44
48	Visualisation of sentinel lymph node with indium-based near infrared emitting Quantum Dots in a murine metastatic breast cancer model. <i>PLoS ONE</i> , 2012 , 7, e44433	3.7	42
47	Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. <i>Molecular Imaging and Biology</i> , 2010 , 12, 394-405	3.8	40
46	Two-photon absorption and fluorescence in nanoscale multipolar chromophores: effect of dimensionality and charge-symmetry. <i>Journal of Molecular Structure</i> , 2004 , 704, 17-24	3.4	39
45	Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells. <i>Small</i> , 2012 , 8, 1029-37	11	38
44	In Vivo Imaging of Single Tumor Cells in Fast-Flowing Bloodstream Using Near-Infrared Quantum Dots and Time-Gated Imaging. <i>ACS Nano</i> , 2019 , 13, 3125-3131	16.7	35
43	Fast, Efficient, and Stable Conjugation of Multiple DNA Strands on Colloidal Quantum Dots. <i>Bioconjugate Chemistry</i> , 2015 , 26, 1582-9	6.3	35
42	Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools. <i>ACS Applied Materials & Document Communication (Communication)</i> 13 (2004) 13 (2004) 13 (2004) 14 (2004) 15 (2004) 15 (2004) 16 (200	9.5	34
41	Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 10128-10134	9.5	32
40	On the characterization of the surface chemistry of quantum dots. <i>Nano Letters</i> , 2013 , 13, 5075-8	11.5	31
39	Compact tridentate ligands for enhanced aqueous stability of quantum dots and in vivo imaging. <i>Chemical Science</i> , 2013 , 4, 411-417	9.4	31
38	Enhancing fluorescence in vivo imaging using inorganic nanoprobes. <i>Current Opinion in Biotechnology</i> , 2015 , 34, 65-72	11.4	30
37	Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. <i>ACS Applied Materials & Dots Acs Accordance (1978) 17107-17116</i>	9.5	29
36	Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. <i>Scientific Reports</i> , 2015 , 5, 10	62 469	29
35	Examining the Polyproline Nanoscopic Ruler in the Context of Quantum Dots. <i>Chemistry of Materials</i> , 2015 , 27, 6222-6237	9.6	25

(2021-2014)

Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection. <i>Journal of Biomedical Optics</i> , 2014 , 19, 051208	3.5	25
Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe1\(\mathbb{I}\)Tex Nanoplatelet Heterostructures Using Band-Offset Tuning. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24816-24823	3.8	20
Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. <i>Soft Matter</i> , 2011 , 7, 6187	3.6	20
Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. <i>Journal of Experimental and Clinical Cancer Research</i> , 2019 , 38, 306	12.8	17
Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots. <i>Small</i> , 2011 , 7, 2101-8	11	17
Photoinduced flip-flop of amphiphilic molecules in lipid bilayer membranes. <i>Physical Review Letters</i> , 2002 , 89, 288104	7.4	17
Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers. <i>Journal of Biomedical Optics</i> , 2011 , 16, 076019	3.5	14
Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1863-1872	16.4	14
Near-Infrared Emitting AgInTe2 and Zn-Ag-In-Te Colloidal Nanocrystals. <i>Nanoscale Research Letters</i> , 2015 , 10, 951	5	12
The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. <i>Photodiagnosis and Photodynamic Therapy</i> , 2019 , 26, 150-156	3.5	10
Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. <i>Nanomaterials</i> , 2018 , 8,	5.4	10
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters. <i>ACS Applied Materials & Dot Nanoclusters</i> , 9, 18161-18169	9.5	9
Membrane potential detection with second-harmonic generation and two-photon excited fluorescence: A theoretical comparison. <i>Optics Communications</i> , 2006 , 258, 203-209	2	9
Microcavity-Enhanced Fluorescence Energy Transfer from Quantum Dot Excited Whispering Gallery Modes to Acceptor Dye Nanoparticles. <i>ACS Nano</i> , 2021 , 15, 1445-1453	16.7	9
TWO-PHOTON ABSORPTION AND FLUORESCENCE WITH QUADRUPOLAR AND BRANCHED CHROMOPHORESEFFECT OF STRUCTURE AND BRANCHING. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2004 , 13, 451-460	0.8	7
A novel type of quantum dot-transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. <i>Nanoscale</i> , 2017 , 9, 15453-15460	7.7	6
Autoconfocal microscopy with nonlinear transmitted light detection. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2004 , 21, 1486	1.7	5
Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. <i>Nature Communications</i> , 2021 , 12, 6035	17.4	5
	Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe1\text{West} Nanoplatelet Heterostructures Using Band-Offset Tuning. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24816-24823 Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. <i>Soft Matter</i> , 2011 , 7, 6187 Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. <i>Journal of Experimental and Clinical Cancer Research</i> , 2019 , 38, 306 Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots. <i>Small</i> , 2011 , 7, 2101-8 Photoinduced flip-flop of amphiphilic molecules in lipid bilayer membranes. <i>Physical Review Letters</i> , 2002 , 89, 288104 Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers. <i>Journal of Biomedical Optics</i> , 2011 , 16, 076019 Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1863-1872 Near-Infrared Emitting AgInTe2 and Zn-Ag-In-Te Colloidal Nanocrystals. <i>Nanoscale Research Letters</i> , 2015 , 10, 951 The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. <i>Photoidiagnosis and Photodynamic Therapy</i> , 2019 , 26, 150-156 Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. <i>Nanomaterials</i> , 2018 , 8, Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 18161-18169 Membrane potential detection with second-harmonic generation and two-photon excited fluorescence: A theoretical comparison. <i>Optics Communications</i> , 2006 , 258, 203-209 Microcavity-Enhanced Fluorescence Energy Transfer from Quantum Dot Excited Whispering Gallery Mode	Engineering Bicolor Emission in 2D Core/Crown CdSe/CdSe1liTex Nanoplatelet Heterostructures Using Band-Offset Tuning. Journal of Physical Chemistry C, 2017, 121, 24816-24823 Quantum dot-loaded PECylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. Soft Matter, 2011, 7, 6187 Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 306 Single-molecule colocalization studies shed light on the idea of fully emitting versus dark single quantum dots. Small, 2011, 7, 2101-8 Photoinduced flip-flop of amphiphilic molecules in lipid bilayer membranes. Physical Review Letters, 2002, 89, 288104 Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers. Journal of Biomedical Optics, 2011, 16, 076019 Surface Modification of CdE (E. S., Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment. Journal of the American Chemical Society, 2021, 143, 1863-1872 Near-Infrared Emitting AgInTe2 and Zn-Ag-In-Te Colloidal Nanocrystals. Nanoscale Research Letters, 2015, 10, 951 Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. Nanomaterials, 2018, 8, Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters. ACS Applied Materials & Amp; Interfaces, 2017, 9, 18161-18169 Membrane potential detection with second-harmonic generation and two-photon excited fluorescence: A theory of Nanoparticles. ACS Nano, 2021, 15, 1445-1453 TWO-PHOTON ABSORPTION AND FLUORESCENCE WITH QUADRUPOLAR AND BRANCHED CHROMOPHORESEFFECT OF STRUCTURE AND BRANCHING. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 451-460 Anovel type of quantum dot-transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous trans

16	NIR Imaging of the Integrin-Rich Head and Neck Squamous Cell Carcinoma Using Ternary Copper Indium Selenide/Zinc Sulfide-Based Quantum Dots. <i>Cancers</i> , 2020 , 12,	6.6	4
15	Real-Space Investigation of Energy Transfer through Electron Tomography. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 28395-28402	3.8	4
14	Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular ph	ysiolog	ЭУ 4
13	pH-Sensitive Visible or Shortwave Infrared Quantum Dot Nanoprobes Using Conformation-Switchable Copolymeric Ligands. <i>ACS Applied Materials & District Applied & District Ap</i>	18-2:50	16 ³
12	Imaging of Red-Shifted Light From Bioluminescent Tumors Using Fluorescence by Unbound Excitation From Luminescence. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 73	5.8	3
11	NanoPaint: A Tool for Rapid and Dynamic Imaging of Membrane Structural Plasticity at the Nanoscale. <i>Small</i> , 2019 , 15, e1902796	11	2
10	Delivery of quantum dot bioconjugates to the cellular cytosol: release from the endolysosomal system 2010 ,		2
9	Fluorescence properties of self assembled colloidal supraparticles from CdSe/CdS/ZnS nanocrystals. <i>New Journal of Physics</i> , 2020 , 22, 113026	2.9	2
8	Luminescent Semiconductor Quantum Dots in Biology141-157		1
7	Hydrodynamic sizes of functional hydrophilic QDs 2006 , 6096, 281		1
6	Molecular engineering of nanoscale quadrupolar chromophores for two-photon absorption 2003 , 4797, 284		1
5	Imaging of red-shifted photons from bioluminescent tumours using fluorescence by unbound excitation from luminescence		1
4	Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. <i>Cancers</i> , 2022 , 14, 2456	6.6	O
3	Single-Molecule Applications 2013 , 323-356		
2	Le projet DOT-IMAGER. <i>Irbm</i> , 2010 , 31, 70-72	4.8	
1	Probing the effects of spectral overlap on quantum-dot-based FRET: Ensemble and single molecule studies 2006 , 6096, 91		