Lingyun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1820675/publications.pdf

Version: 2024-02-01

168829 162838 3,404 64 31 57 citations h-index g-index papers 66 66 66 5948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy. Nano Research, 2022, 15, 2244-2253.	5.8	11
2	Ultraâ€Sensitive Ironâ€Doped Palladium Nanocrystals with Enhanced Hydroxyl Radical Generation for Chemoâ€∤Chemodynamic Nanotherapy. Advanced Functional Materials, 2022, 32, 2107518.	7.8	22
3	Local Destruction of Tumors for Systemic Immunoresponse: Engineering Antigen-Capturing Nanoparticles as Stimulus-Responsive Immunoadjuvants. ACS Applied Materials & Simulus-Responsive Immunoadjuvants. ACS Applied Materials & Simulus-Responsive Immunoadjuvants. ACS Applied Materials & Simulus-Responsive Immunoadjuvants. ACS Applied Materials & Simulus Responsive Im	4.0	8
4	Facile preparation of recyclable Fe@metal phenolic networks-Au system for catalytic reduction of 4-nitrophenol. Materials Chemistry and Physics, 2022, 281, 125907.	2.0	2
5	TME-responded Full-biodegradable nanocatalyst for mitochondrial calcium Overload-induced hydroxyl radical bursting cancer treatment. Chemical Engineering Journal, 2022, 438, 135372.	6.6	11
6	Magnetic Self-Healing Hydrogel from Difunctional Polymers Prepared via the Kabachnik–Fields Reaction. ACS Macro Letters, 2022, 11, 39-45.	2.3	21
7	Ultrafast Fabrication of Iron/Manganese Co-Doped Bismuth Trimetallic Nanoparticles: A Thermally Aided Chemodynamic/Radio-Nanoplatform for Low-Dose Radioresistance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21931-21944.	4.0	4
8	Photoactivation-triggered in situ self-supplied H2O2 for boosting chemodynamic therapy via layered double Hydroxide-mediated catalytic cascade reaction. Chemical Engineering Journal, 2022, 446, 137310.	6.6	11
9	Langmuir–Blodgett Deposition of Cellulose Nanocrystal Surfactants into Ordered Monolayers. Langmuir, 2022, 38, 8495-8501.	1.6	1
10	Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioactive Materials, 2021, 6, 602-612.	8.6	43
11	Gold–iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. Biomaterials Science, 2021, 9, 3979-3988.	2.6	15
12	Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomaterials Science, 2021, 9, 5928-5938.	2.6	17
13	Biodegradable Flexible Electronic Device with Controlled Drug Release for Cancer Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21067-21075.	4.0	14
14	Hypoxia-Overcoming Breast-Conserving Treatment by Magnetothermodynamic Implant for a Localized Free-Radical Burst Combined with Hyperthermia. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35484-35493.	4.0	7
15	Advances in enzyme-catalysis-mediated RAFT polymerization. Cell Reports Physical Science, 2021, 2, 100487.	2.8	16
16	Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics, 2021, 11, 6407-6426.	4.6	63
17	Boosting the photothermal performance of vacancy-rich MoSe _{2â^'<i>x</i>} nanoflowers for photoacoustic imaging guided tumor chemo-photothermal therapy. Nanoscale, 2021, 13, 14960-14972.	2.8	11
18	Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5845-5855.	2.3	27

#	Article	IF	Citations
19	Dihydroartemisinin loaded layered double hydroxide nanocomposites for tumor specific photothermal–chemodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 11082-11089.	2.9	24
20	Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. Journal of Controlled Release, 2020, 324, 598-609.	4.8	51
21	Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive Fe ₅ C ₂ @Fe ₃ O ₄ Nanoparticles. ACS Nano, 2019, 13, 10002-10014.	7.3	138
22	Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chemical Communications, 2019, 55, 9801-9804.	2.2	38
23	Neoadjuvant nano-photothermal therapy used before operation effectively assists in surgery for breast cancer. Nanoscale, 2019, 11, 706-716.	2.8	17
24	Multifunction bismuth gadolinium oxide nanoparticles as radiosensitizer in radiation therapy and imaging. Physics in Medicine and Biology, 2019, 64, 195007.	1.6	27
25	Magnetic Hydrogel with Optimally Adaptive Functions for Breast Cancer Recurrence Prevention. Advanced Healthcare Materials, 2019, 8, e1900203.	3.9	85
26	Nonâ€Magnetic Injectable Implant for Magnetic Fieldâ€Driven Thermochemotherapy and Dual Stimuliâ€Responsive Drug Delivery: Transformable Liquid Metal Hybrid Platform for Cancer Theranostics. Small, 2019, 15, e1900511.	5.2	65
27	Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced <i>T</i> ₁ / <i>T</i> ₂ -Weighted Dual-Mode Magnetic Resonance Imaging Contrast Agent. ACS Biomaterials Science and Engineering, 2019, 5, 2555-2562.	2.6	37
28	Effect of in vitro collagen fibrillogenesis on Langmuir-Blodgett (LB) deposition for cellular behavior regulation. Colloids and Surfaces B: Biointerfaces, 2019, 179, 48-55.	2.5	4
29	Nonmagnetic Hypertonic Saline-Based Implant for Breast Cancer Postsurgical Recurrence Prevention by Magnetic Field/pH-Driven Thermochemotherapy. ACS Applied Materials & Diterfaces, 2019, 11, 10597-10607.	4.0	17
30	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Science China Life Sciences, 2018, 61, 448-456.	2.3	35
31	A theranostic nanocomposite system based on radial mesoporous silica hybridized with Fe ₃ O ₄ nanoparticles for targeted magnetic field responsive chemotherapy of breast cancer. RSC Advances, 2018, 8, 4321-4328.	1.7	30
32	"Allâ€inâ€One―Nanoparticles for Trimodality Imagingâ€Guided Intracellular Photoâ€magnetic Hyperthermia Therapy under Intravenous Administration. Advanced Functional Materials, 2018, 28, 1705710.	7.8	90
33	Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Research, 2018, 11, 2470-2487.	5.8	50
34	Synthesis of hierarchical sieve-like mesoporous silica nanoparticle aggregates via centrifugal method for drug delivery system. Chinese Chemical Letters, 2018, 29, 1804-1810.	4.8	11
35	Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8, 3284-3307.	4.6	272
36	Self-Adapting Hydrogel to Improve the Therapeutic Effect in Wound-Healing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26046-26055.	4.0	98

#	Article	IF	CITATIONS
37	Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. International Journal of Nanomedicine, 2018, Volume 13, 2883-2895.	3.3	77
38	General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics. Nano Research, 2017, 10, 704-717.	5.8	26
39	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33660-33673.	4.0	150
40	Melatonin potentiates & amp; Idquo; inside-out & amp; rdquo; nano-thermother apy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles. International Journal of Nanomedicine, 2017, Volume 12, 7351-7363.	3.3	15
41	Synthesis of Ferromagnetic Fe _{0.6} Mn _{0.4} O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T ₁ â€T ₂ Dualâ€Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Advanced Healthcare Materials, 2016, 5, 2092-2104.	3.9	75
42	Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic- <i>co</i> glycolic acid)/Polypyrrole Nanocomposites. ACS Applied Materials & Docetaxel-Loaded Poly(lactic- <i>co</i> diagram of the Photoside Polycolic Acid (Polypyrrole Nanocomposites) Polycolic Acid (Polypyrrole Nanocom	4.0	37
43	Aggregation Induced Emission Fluorogens Based Nanotheranostics for Targeted and Imagingâ€Guided Chemoâ€Photothermal Combination Therapy. Small, 2016, 12, 6568-6575.	5. 2	53
44	2-Deoxy- <l>D-Glucose</l> Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging. Journal of Nanoscience and Nanotechnology, 2016, 16, 2401-2407.	0.9	9
45	Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled <i>via</i> Fe ₅ C ₂ Nanoparticles. ACS Nano, 2016, 10, 159-169.	7.3	136
46	Frequency-specific adaptation and its underlying circuit model in the auditory midbrain. Frontiers in Neural Circuits, 2015, 9, 55.	1.4	15
47	Magnetic Vortex Nanorings: A New Class of Hyperthermia Agent for Highly Efficient In Vivo Regression of Tumors. Advanced Materials, 2015, 27, 1939-1944.	11.1	165
48	Multifunctional Fe ₅ C ₂ Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomographyâ€Guided Photothermal Therapy. Advanced Materials, 2014, 26, 4114-4120.	11,1	232
49	Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Advanced Drug Delivery Reviews, 2013, 65, 880-890.	6.6	308
50	Hyperthermia inhibits the proliferation and invasive ability of mouse malignant melanoma through TGF-Î ² 1. Oncology Reports, 2013, 29, 725-734.	1.2	8
51	Thermochemotherapy Mediated by Novel Solar-Planet Structured Magnetic Nanocomposites for Glioma Treatment. Journal of Nanoscience and Nanotechnology, 2012, 12, 1024-1031.	0.9	12
52	Magnetic Nanocomposite Devices for Cancer Thermochemotherapy. , 2011, , .		4
53	Nanomedicine for oral chemotherapy. Nanomedicine, 2011, 6, 407-410.	1.7	36
54	Understanding Auditory Spectro-Temporal Receptive Fields and Their Changes with Input Statistics by Efficient Coding Principles. PLoS Computational Biology, 2011, 7, e1002123.	1.5	14

#	Article	IF	CITATIONS
55	Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Research, 2010, 3, 23-31.	5.8	90
56	Enhanced Oral Bioavailability of Paclitaxel Formulated in Vitamin E-TPGS Emulsified Nanoparticles of Biodegradable Polymers: In Vitro and In Vivo Studies. Journal of Pharmaceutical Sciences, 2010, 99, 3552-3560.	1.6	95
57	Glutaraldehyde Mediated Conjugation of Amino-Coated Magnetic Nanoparticles with Albumin Protein for Nanothermotherapy. Journal of Nanoscience and Nanotechnology, 2010, 10, 7117-7120.	0.9	14
58	Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168h in vivo. Chemical Engineering Science, 2007, 62, 6641-6648.	1.9	87
59	DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. International Journal of Pharmaceutics, 2007, 338, 258-266.	2.6	79
60	Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air–water interface. Journal of Colloid and Interface Science, 2006, 300, 314-326.	5.0	62
61	Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane. Journal of Colloid and Interface Science, 2005, 285, 326-335.	5.0	67
62	Investigation of molecular interactions between paclitaxel and DPPC by langmuir film balance and differential scanning calorimetry. Journal of Pharmaceutical Sciences, 2004, 93, 86-98.	1.6	54
63	Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. Journal of Colloid and Interface Science, 2004, 274, 55-68.	5.0	87
64	Molecular interactions between lipid and paclitaxel (Taxol/sup (R)) within cell membrane simulated by the lipid monolayer at the air-water interface., 0 , 0 .		O